首页|基于布谷鸟算法与BP神经网络的煤灰变形温度预测

基于布谷鸟算法与BP神经网络的煤灰变形温度预测

扫码查看
以120种煤样为数据基础,采用布谷鸟算法( CS)优化BP( BackP ropagatino )神经网络,建立了CSBP模型对单煤、煤掺添加剂和配煤等3类样本的煤灰变形温度( DT)样本进行预测。模型以煤灰化学成分及其组合参数等13个变量作为输入量,以变形温度( DT)作为输出量。 CSBP模型预测结果与BP神经网络模型预测结果进行对比发现,无论是单煤、煤掺添加剂还是配煤,CSBP模型较BP模型对煤灰变形温度( DT)的预测都更加精准,平均相对误差分别达到了3.11%、4.08%和4.22%。另外,对比3类样本预测结果发现,无论是CSBP模型还是BP模型,相比单煤预测而言,煤掺添加剂及配煤的预测误差都有明显的增加。
Predictio n of coal ash de formation temperature based on Cuckoo Search and BP Neural Netwo rk
On the basi of 120 coal ash samples, a CSBP model basedo n BP ( Back Propaga tion) Neural Ne twork optimized by Cuckoo Search ( CS ) was proposde for predicting the ash deformation temperature of single coals, coals mixed witha ddictives and mixed coals.The thirteen chemical composition parameters and combined parameters were employed as inputs, and the ash deformation temperature was used as output of the CSBP model.The results show that whether single coal, coal mixed with additivesor mixed cola s, CSBP modleahsa bettre perfor mance compared with BP model and the average relative errors are reduced to 3.11%, 4.08%and 4.22%, respectively.In addition, comparing the prediction results of three kinds of samples,both the CSBP model and BP model haveh igher prediction errors for coals mixed with addicit ves and mixed coals more ht an that for single coals.

coal ashash deformation temep ratureBP Neural NetworkCuckoo Sae rchaddictivesmixed coals

沈铭科、黄镇宇、王智化、周俊虎

展开 >

浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027

煤灰 灰变形温度 BP神经网络 布谷鸟算法 添加剂 配煤

国家重点基础研究发展规划(973计划

2012CB214906

2014

燃料化学学报(中英文)
中国化学会 中国科学院山西煤炭化学研究所

燃料化学学报(中英文)

CSTPCDCSCD北大核心EI
影响因子:1.278
ISSN:2097-213X
年,卷(期):2014.(12)
  • 6
  • 8