首页|基于SSA-NARX的航空发动机动态特性参数辨识方法

基于SSA-NARX的航空发动机动态特性参数辨识方法

扫码查看
针对航空发动机动态特性的建模问题,提出一种基于麻雀搜索算法(SSA)优化NARX神经网络的动态特性参数辨识方法.利用SSA对NARX网络的权值与偏置进行迭代寻优,使网络具备更高的准确度与泛化能力;利用优化后的NARX网络进行动态参数辨识;使用航空发动机飞行测试数据集进行了仿真测试.结果表明:SSA-NARX方法明显优于NARX和PSO-NARX方法.SSA-NARX方法的输出参数N1,N2和排气温度(EGT)与真实值的最大相对误差绝对值δmax分别降低至3.81%,1.24%和3.47%;动态特性指标Ti与Tt与真实值的相对误差均小于5%;经10次交叉试验,参数N1,N2和EGT的测试结果均方根误差均值RMSEm分别为0.29,0.18和1.50.模型的准确性、实时性与稳健性均满足了仿真需求.
A Methodology for Aero-engine Dynamic Characteristic Parameter Identification based on SSA-NARX
A dynamic characteristic parameter identification method based on the sparrow search algo-rithm(SSA)and nonlinear autoregressive exogenous(NARX)neural network was proposed for the aero-engine dynamic characteristics modeling.SSA was used to optimize the weights and biases of the NARX network iteratively to enhance its accuracy and generalization capability;the optimized NARX network was used for identifying dynamic characteristic parameters;simulation tests were conducted using flight test dataset.The results show that SSA-NARX method is better than the NARX and PSO-NARX methods obviously.By the SSA-NARX method,the maximum relative error absolute values δmax between the output parameters N1,N2 and exhaust gas temperature(EGT)and actual values are reduced to 3.81%,1.24%and 3.47%respectively;the relative errors between the dynamic characteristic indicators Ti and T,and ac-tual values are less than 5%;through ten cross tests,the mean values of root mean square errors(RMSEm)of validation results corresponding to parameters N,,N2 and EGT are 0.29,0.18 and 1.50 respectively.The accuracy,real-time performance and robustness of the model meet the requirements for simulation.

aero-enginedata drivensparrow search algorithm(SSA)nonlinear autoregressive exoge-nous(NARX)neural networkdynamic model identifiication

陈子桥、洪军、肖刚、温新

展开 >

上海交通大学机械与动力工程学院,上海 200240

上海交通大学航空航天学院,上海 200240

航空发动机 数据驱动 麻雀搜索算法 非线性自回归神经网络 动态模型辨识

国家自然科学基金面上项目

12072196

2024

热能动力工程
中国 哈尔滨 第七0三研究所

热能动力工程

CSTPCD北大核心
影响因子:0.345
ISSN:1001-2060
年,卷(期):2024.39(1)
  • 27