首页|基于PSO-IWOA改进算法的CFB锅炉燃烧系统建模

基于PSO-IWOA改进算法的CFB锅炉燃烧系统建模

扫码查看
针对现有CFB锅炉建模方法需要调节参数过多、精度不足的问题,提出一种基于粒子群改进鲸鱼算法(Particle Swarm Optimization Improved Whale Optimization Algorithm,PSO-IWOA)的建模方法,即利用混沌映射初始化种群,采用动态螺旋更新、改进收敛因子、引入粒子群自适应惯性权重,提高了算法的全局搜索能力、收敛速度和寻优精度.应用PSO-WOA算法对CFB锅炉燃烧系统进行建模,并通过实验进行模型有效性验证.实验结果表明:PSO-IWOA算法能建立较为精确的燃烧系统模型,该算法将模型精度提高了86.51%.
Modeling of CFB Boiler Combustion System based on PSO-IWOA Optimization Algorithm
To solve the problem that existing CFB boiler modeling methods need to adjust too many pa-rameters and have insufficient accuracy,a modeling method of particle swarm optimization improved whale optimization algorithm(PSO-IWOA)is proposed,which uses chaotic mapping to initialize the pop-ulation,adopts dynamic spiral updating,improves the convergence factor and introduces the particle swarm adaptive inertia weight.The method improves the global search ability,convergence speed and op-timization accuracy of the algorithm.The combustion system of CFB boiler is modeled by PSO-WOA algo-rithm,and the effectiveness of the model is verified by experiments.The experimental results show that PSO-IWOA algorithm can establish a more accurate combustion system model,and the model accuracy is improved by 86.51%.

circulating fluidized bed(CFB)combustion systemwhale optimization algorithmsystem modelrapid identification

王琦、刘祥、张静、荆蕊蕊

展开 >

山西大学 自动化与软件学院,山西 太原 030006

循环流化床 燃烧系统 鲸鱼算法 系统模型 快速辨识

国家自然科学基金联合基金

U1610116

2024

热能动力工程
中国 哈尔滨 第七0三研究所

热能动力工程

CSTPCD北大核心
影响因子:0.345
ISSN:1001-2060
年,卷(期):2024.39(5)