首页|基于卷积神经网络的火箭冲压组合发动机燃烧流场重构

基于卷积神经网络的火箭冲压组合发动机燃烧流场重构

扫码查看
本文提出一种基于卷积神经网络架构的燃烧流场重构模型,旨在从低分辨率温度场中重构得到具有复杂流场特征的火箭冲压组合发动机二维温度场.通过大涡模拟方法获得了 4 种不同构型燃烧室的湍流燃烧流场数据集,使用其中 3 组构型作为训练集,并对另一个构型燃烧室温度场的重构结果进行分析,以对重构神经网络模型进行验证.研究结果表明,该温度场重构模型可以有效从低分辨率温度场中重构得到二维高分辨率温度分布,在中心火箭后缘主要燃烧区域的温度场重构平均误差小于 5%,重构精度高于双三次插值算法.本研究数据集和模型可为后续实现组合发动机燃烧状态的智能感知和调控提供支撑.
Reconstruction of Combustion Flow Field for Rocket Based Combined Cycle Engine Based on Convolutional Neural Network
A reconstruction model of combustion flow field based on convolutional neural network architecture is proposed.The objective is to reconstruct the two-dimensional temperature field of rocket based combined cy-cle(RBCC)engine with complex flow field characteristics from a low-resolution temperature field.The turbulent combustion flow field dataset of four different structures of combustors was obtained by a large eddy simulation method.Three of these structures were used as training dataset,and the reconstruction results of the temperature field for the remaining structure was analyzed in order to validate the reconstruction neural network model.The results demonstrate the effectiveness of the temperature field reconstruction model in accurately reconstructing the two-dimensional high-resolution temperature distribution from the low-resolution temperature field.The average error of the temperature field reconstruction in the primary combustion region at the trailing edge of the central rocket is below 5%,surpassing the accuracy achieved by the bicubic interpolation algorithm.The dataset and model presented in this study provide a foundation for the subsequent development of intelligent perception and regulation of combustion for the RBCC engine.

rocket based combined cycle engineconvolution neural networkflow field reconstructionturbulent combustion

高屹、刘冰、张至斌、朱韶华、朱梦豪、秦飞

展开 >

西北工业大学固体推进全国重点实验室,西安 710072

北京动力机械研究所,北京 100072

火箭冲压组合发动机 卷积神经网络 流场重构 湍流燃烧

2025

燃烧科学与技术
天津大学

燃烧科学与技术

北大核心
影响因子:0.617
ISSN:1006-8740
年,卷(期):2025.31(1)