首页|基于BP神经网络和SSA-SVM的接地网腐蚀速率组合预测

基于BP神经网络和SSA-SVM的接地网腐蚀速率组合预测

Combination Forecasting for Corrosion Rate of Grounding Grid Based on BP Neural Network and SSA-SVM

扫码查看
为提高接地网腐蚀速率预测精度,提出了一种接地网腐蚀速率组合预测方法.首先,采用SSA算法对SVM进行优化,建立接地网SSA-SVM腐蚀预测速率模型;然后,采用 6-11-1 的BP神经网络对SSA-SVM模型的预测残差进行修正,建立了基于BP神经网络和SSA-SVM的接地网腐蚀速率组合预测模型;最后,采用接地网腐蚀实验数据进行算例分析.结果表明,所提接地网腐蚀速率组合模型预测结果的均方根误差、平均相对误差和相关系数分别为 0.192、4.98%和 0.974 6,在模型稳定性、预测精度、预测结果与实际值的相关性均优于其他模型,验证了所提模型的正确性和优越性.
In order to improve the prediction accuracy of grounding grid corrosion rate,a combined prediction method of grounding grid corrosion rate was proposed.Firstly,the SSA algorithm is used to optimize the SVM,and the SSA-SVM corrosion prediction rate model of the grounding grid is established.Then,the prediction residual of the SSA-SVM model is modified using the 6-11-1 BP neural network,and a combined prediction model of the grounding grid corrosion rate based on BP neural network and SSA-SVM is established.Finally,an example is analyzed by using the experimental data of grounding grid corrosion.The results show that the root-mean-square error,average relative error and correlation coefficient of the prediction results of the combined model of grounding grid corrosion rate proposed in this paper are 0.192,4.98% and 0.974 6,respectively.The model stability,prediction accuracy,and correlation between the prediction results and the actual values are better than other models,which verifies the correctness and superiority of the model.

grounding gridcorrosion ratecombination forecastsparrow search algorithmsupport vector machineBP neural network

张衡、刘闯、刘炬、严文帅、刘云飞、陈海旭

展开 >

福州亿力电力工程有限公司,福建 福州 350000

国网湖北省电力有限公司荆门供电公司,湖北 荆门 448000

三峡大学电气与新能源学院,湖北 宜昌 443000

国网福建省电力有限公司福州供电公司,福建 福州 350000

展开 >

接地网 腐蚀速率 组合预测 麻雀搜索算法 支持向量机 BP神经网络

国家自然科学基金资助项目

51907104

2024

四川电力技术
四川省电机工程学会 四川电力试验研究院

四川电力技术

影响因子:0.347
ISSN:1003-6954
年,卷(期):2024.47(1)
  • 15