首页|面向暗网抑制的普适性安全理论研究构想和成果展望

面向暗网抑制的普适性安全理论研究构想和成果展望

扫码查看
近年来,匿名网络及其架构上的"暗网"因其强隐蔽、高匿名、抗追溯的特性,成为传递敏感信息、实施网络攻击及开展网络犯罪的重要工具,给国家安全和社会稳定带来严重威胁。为应对暗网治理中通信行为隐蔽难识别、网络拓扑跳变难绘制、陷阱节点部署难伪装等挑战,本文旨在研究面向暗网抑制的普适性安全理论。本研究的关键科学问题凝练为:强对抗机制下结构信息缺失的动态时变网络行为刻画与推理问题。为突破以上问题,拟从基础理论、应用技术和示范系统3个层面开展研究,实现1个框架、3个方法、1个系统等五大研究内容。具体为:一是,建立面向暗网流量差异性与行为共性的协同量化理论框架,提出异构暗网普适性特征与差异化要素表征、统一安全量化、生态脆弱图构建及推理理论,解决网络结构复杂多样、通信行为动态多变的暗网可抑制性量化评估问题;二是,提出基于凸优化问题求解的流量实时轻量化识别方法,通过构建基于自身相似性关联的小流抽样模型与基于高斯核函数和多模态优化的暗网流量识别与业务分类模型,实现对暗网流量的实时、轻量化精准识别与分类;三是,提出基于行为不变性的多网络全时域连接预测与通连关系绘制方法,在统一安全量化理论的基础上,对跨位点连接进行表示,在动态网络中过滤无关连接后进行多网络全时域连接预测,并绘制通连关系,实现局部观测条件下暗网通连的多点全局关联;四是,提出基于局部观测暗网通连最优化的陷阱节点部署与溯源方法,实现部分可控节点条件下的暗网追踪溯源;五是,研发面向真实暗网场景的实时流量检测与溯源示范应用系统,并在相关执法单位进行落地应用,实现对暗网犯罪的精准治理。并且,详细阐述了协同量化理论构建、轻量化暗网流量识别、连接预测与通连关系绘制、陷阱部署与溯源机理、示范应用系统等五大任务的技术路线。通过本文的基础理论研究、技术应用和系统示范验证,推动暗网治理的理论发展,提升抑制暗网的效率,具有重要的社会与经济效益。
Towards a Universal Security Framework for Darknet Suppression:Conceptual Foundations and Future Prospects
Significance In recent years,anonymous networks and their underlying darknet have become vital tools for transmitting sensitive information,conducting cyberattacks,and engaging in cybercrime due to their strong concealment,high anonymity,and resistance to traceability.These char-acteristics pose serious threats to national security and social stability.This project researches a universal security theory for darknet suppression to address the challenges of darknet governance,such as difficulties in identifying concealed communication behaviors,mapping dynamic net-work topologies,and disguising trap node deployments.Progress The main content includes:1)Establishing a collaborative quantitative theoretical framework focused on darknet traffic differences and behavioral commonalities.This involves proposing heterogeneous darknet universal characteristics,differentiated element representations,uni-fied security quantification,and ecological vulnerability graph construction theories.These approaches address the challenge of quantifying darknet suppressibility,which remains complicated by diverse network structures and dynamic communication behaviors.2)Proposing a real-time lightweight traffic detection method based on solving convex optimization problems.This involves constructing a small flow sampling mod-el based on self-similarity associations and a darknet traffic identification and service classification model using Gaussian kernel functions and multimodal optimization.This method enables precise,real-time identification and classification of darknet traffic.3)Introducing a multi-net-work full-time domain connection prediction and relationship mapping method based on behavioral invariance.This approach represents cross-point connections and filters out irrelevant connections in dynamic networks to predict multi-network full-time domain connections and map rela-tionships,achieving multi-point global associations of darknet connections under local observation conditions.4)Proposing a trap node deploy-ment and tracing optimization method for darknet connections based on local observations,enabling tracking and tracing of the darknet under con-ditions of partially controllable nodes.5)Developing a real-time traffic detection and tracing demonstration system for real-world darknet scenari-os,which law enforcement agencies implement to achieve precise governance of darknet-related crimes.Conclusions and Prospects This project significantly contributes to darknet governance by developing a quantitative framework for analyzing and managing darknet traffic.The proposed real-time lightweight traffic detection method enhances law enforcement's ability to identify and clas-sify darknet activities.In addition,these methods for predicting multi-network connections and optimizing trap node deployment improve track-ing capabilities in complex environments.Future work focuses on refining these methodologies and exploring additional dimensions of darknet behavior to strengthen efforts in combating illicit online activities,generating meaningful social and economic benefits.

darknet governancetraffic detectionbehavior recognitionsecurity quantificationtrap node deployment

黄诚、丁建伟、赵佳鹏、陈周国、时金桥

展开 >

四川大学 网络空间安全学院,四川 成都 610065

中国电子科技集团公司第三十研究所,四川 成都 610093

北京邮电大学 网络空间安全学院,北京 100876

暗网治理 流量检测 行为识别 安全量化 陷阱节点部署

2025

工程科学与技术
四川大学

工程科学与技术

北大核心
影响因子:0.913
ISSN:2096-3246
年,卷(期):2025.57(1)