首页|基于需求响应的电热综合能源系统优化调度研究综述

基于需求响应的电热综合能源系统优化调度研究综述

扫码查看
随着能源需求和能源结构的变化,综合能源系统在满足用户需求和保障能源供应的同时,面临着灵活性调节能力明显下降的问题。需求响应是需求侧参与电网灵活性互动的重要途径,通过需求侧对耦合互补、形式各异的多能进行协同优化,将有利于提高综合能源系统调度的灵活性,弥补系统灵活性的匮乏。本文针对近年来基于需求响应的电热综合能源系统调度的研究现状、调度模型分类、模型求解方法进行了综述。首先,对国内外需求响应机制的研究现状进行分析。根据当前需求响应机制不同分类标准,需求响应机制可按照引导方式和按照用户对系统贡献的评价方式两类划分。按照引导方式可分为电价型和激励型需求响应;按照用户对系统贡献的评价方式可分为非直接评价的电价型和直接评价中的基线、准线型需求响应。其中:电价型需求响应虽可通过制定相关电价引导用户的用电,实现削峰填谷,但其响应效果依赖于电价的制定,具有一定的不可预测性;激励型需求响应不涉及电价的制定,通过激励补偿可调动大量用户积极性,但由于目前的激励方式较单一,不能充分发挥其巨大的调节潜力;基线型主要适用于用户规模较小的情况,存在一定的局限性;准线型需求响应通过为用户提供自主优化的目标,虽然处于理论研究初步阶段,但其削峰填谷、消纳效果明显优于其他需求响应机制,在大规模多元用户参与需求响应的背景下参与多源协同调度时,可更有效促进源荷双侧的良性互动,但目前尚未考虑到风光出力等不确定性因素对负荷准线的影响,后续仍需进行深入研究。其次,对电热综合能源系统的构成、主要特征进行分析。由分析可知,电热综合能源系统是一种多能耦合紧密的电力系统,并根据应用情景的差异划分为基本模型、系统灵活性模型、系统随机性模型3种电热综合能源系统调度模型,并对3种模型的研究现状进行阐述。再次,针对目前基于需求响应的电热综合能源系统优化调度模型求解方法的适应场景、优缺点等进行对比分析。目前的调度模型求解方法主要可分为解析法和人工智能法两种。其中,按调度方式求解可将解析法分为统一求解法和分层求解法。统一求解法主要适用于需快速计算且对精度要求不高的场合;相较于统一求解法,分层求解法不仅可以保持各子系统的独立性,而且可得到全局的最优解,但因其求解时需反复迭代,导致其求解效率仍有待提高。由于人工智能法较简单直接,便于实现和调整,常被用于求解解析法中难以解决的问题。人工智能算法可分为基于群优化问题的算法和机器学习算法两大类。虽然二者均可实现全局最优,但前者需对所有群体进行逐一检查,以完成每次迭代的优化过程,导致其收敛速度较慢;相较于基于群优化问题的算法,机器学习算法具有较高的求解速率和鲁棒性,是目前较常见的一种求解算法,但由于其离线训练时间较长,仍需进一步优化。最后,总结了目前需求响应机制现存问题,并对需求响应参与电热综合能源系统的优化调度进行展望,旨在为未来基于需求响应的电热综合能源系统优化调度研究提供参考。
Review of Demand Response-based Optimal Scheduling of Electric and Thermal Integrated Energy Systems
With the changes in energy demand and structure,the integrated energy system faces a marked decline in flexibility adjustment capa-city while meeting customer demand and securing energy supply.Demand response serves as an essential approach for the demand side to engage in grid stability coordination,improving the flexibility of the integrated energy system and compensating for the lack of system flexibility through demand-side synergistic optimization of the coupled and complementary forms of multi-energy.This study provides an overview of the current re-search status,classification of scheduling models,and model solution methods for demand response-based scheduling of electric and thermal in-tegrated energy systems in recent years.Firstly,the current research status of demand response mechanisms at the domestic and international levels is analyzed.Based on the different classification criteria of current demand response mechanisms,demand response mechanisms are classi-fied into two categories:based on the guiding method and the evaluation method of the user's contribution to the system.They are divided into tar-iff-type and incentive-type demand responses based on the guiding method and tariff-type non-direct evaluation and baseline and quasi-linear de-mand responses in direct evaluation.In particular,compared to tariff-based demand response,which is greatly affected by electricity price,incent-ive-based demand response does not involve the setting of tariffs and is more capable of fully mobilizing many consumers to actively participate.However,due to the current single incentive method of incentive-based demand response,it cannot fully realize its significant regulation potential.Compared to baseline demand response,quasi-linear demand response more effectively raises positive interaction between the source and load sides and facilitates new energy consumption during multi-source coordinated scheduling in the context of large-scale multi-user participation.However,the impact of uncertainty factors such as wind power on load collinearity has not yet been addressed in-depth and requires further study.Secondly,the composition and primary characteristics of the electric-thermal integrated energy system are analyzed.The analysis reveals that the integrated electric and thermal energy system is a power system with close multi-energy coupling.Based on this,the current research status of the three kinds of integrated electric and thermal energy system scheduling models,including the basic,flexibility,and stochastic models,classified based on differences in application scenarios,is elaborated.A comparative analysis of the adaptive scenarios,advantages,and disadvantages of the current demand response-based optimal scheduling models for electric-thermal integrated energy systems is conducted.Current scheduling model solution methods are mainly classified into two types:analytical methods and artificial intelligence methods.Analytical methods are di-vided into unified and hierarchical solutions based on the scheduling method.Comparative analysis indicates that,compared to the unified solu-tion,the hierarchical solution maintains the independence of each subsystem and achieves a globally optimal solution.However,the repeated iter-ations required during solving reduce solving efficiency.Artificial intelligence algorithms are primarily divided into methods based on group op-timization problems and machine learning algorithms.Although both achieve global optimization,machine learning algorithms demonstrate high-er solution rates and robustness compared to methods based on group optimization problems,making them more commonly applied solution al-gorithms.However,the long offline training time for machine learning algorithms requires further optimization.Finally,the existing problems of demand response mechanisms and their future potential trends are summarized,and an outlook on the participation of demand response in the op-timal dispatching of electric and thermal integrated energy systems is provided.This aims to provide a reference for future research on the optim-al dispatching of electric and thermal integrated energy systems based on demand response.

demand responseintegrated energy systemsflexibilityoptimized dispatchingnew energy consumption

莫静山、闫广贤、宋娜、袁铭洋

展开 >

东北电力大学 现代电力系统仿真控制与绿色电能新技术教育部重点实验室,吉林 吉林 132012

三峡大学 电气与新能源学院,湖北 宜昌 443002

需求响应 综合能源系统 灵活性 优化调度 新能源消纳

2025

工程科学与技术
四川大学

工程科学与技术

北大核心
影响因子:0.913
ISSN:2096-3246
年,卷(期):2025.57(1)