首页|求MDS码权多项式的组合方法

求MDS码权多项式的组合方法

扫码查看
MDS码是一种满足Singleton界的好码。由于出色的编码能力,MDS码已得到广泛的应用。MDS码的权多项式由其参数[n,k,d]完全决定。本文利用容斥原理计算MDS码中不同Hamming权的码字个数,给出了MDS码权多项式的一个新证明。设d≤w≤n,从n个位置中任选d个构成集合S。本文证明:MDS码中支集为S且在S第一个位置为1的码字个数为∑w-dj=0(-1)j(w-1j)qw-d-j。证明的关键是对支集包含于S且在S第一个位置为1的码字集使用容斥原理,并利用MDS码校验阵中任意d-1列线性无关的性质。该证明直观揭示了MDS码权多项式中各项的组合意义。相较于教科书中的证明,本文的证明不使用MacWil-liams恒等式。
A combinatorial method for calculating the weight polynomial of MDS codes
MDS code is a good code and satisfy the Singleton bound.Nowadays,MDS code has been widely used in practice due to its excellent decoding ability.The weight polynomial of MDS code is completely deter-mined by its parameters[n,k,d].In this paper,by using the inclusion-exclusion principle,we calculate the number of code words with fixed Hamming weights in MDS code and gives a new proof of MDS code weight polynomial.Let d≤w≤n and choose d positions from n positions to form set S.We prove that the number of code words in the MDS code with support set S and element 1 at the first position of S is ∑w-dj=0(-1)j(w-1j)qw-d-j.The key of proof is to apply the inclusion-exclusion principle for the set of code words with support set contained in S and element 1 at the first position of S,and to use the linear independence of any d-1 columns in the MDS code parity check matrix.The proof intuitively reveals the combinatorial meaning of the coefficients in MDS code weight polynomial.In contrast to the proof in textbook,our proof does not use the MacWilliams identity.

MDS codeWeight polynomialInclusion-exclusion principle

李岩、孙久兴

展开 >

中国农业大学理学院, 北京 100083

MDS 权多项式 容斥原理

密码科学技术国家重点实验室开放基金

MMKFKT201910

2024

四川大学学报(自然科学版)
四川大学

四川大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.358
ISSN:0490-6756
年,卷(期):2024.61(2)
  • 8