首页|形式幂级数∏∞n=0(1-x2n)m系数的无界性

形式幂级数∏∞n=0(1-x2n)m系数的无界性

扫码查看
设∏∞n=0(1-x2n)为Prouhet-Thue-Morse序列的生成级数。设m≥2为正整数。令Fm(x)=(F(x))m=(∏∞n=0(1-x2n))m≔∑∞n=0tm(n)xn。2018年,Gawron,Miska和 Ulas猜想:当m≥2 时序列{tm(n)}∞n=1无界。对于m=3 及m=2k的情形,他们通过研究tm(n)的2-adic赋值证明猜想部分成立。本文发展了一种新方法,即由序列{tm(n)}∞n=1的递推关系式得到一类反中心对称矩阵,然后通过计算其相应矩阵的特征值来证明猜想。利用这种方法,本文证明当m=5和6时猜想成立。此外,本文还给出了序列{t5(n)}∞n=1和{t6(n)}∞n=1的无界子列,以及{t5(n)}∞n=1的一个子列的2-adic 赋值表达式,进而证明了另一个关于{t5(n)}∞n=1的2-adic赋值的猜想部分成立。
On the unboundedness of the coefficients of power series ∏∞n=0(1-x2n)m
Let ∏∞n=0(1-x2n)be the generating function of the Prouhet-Thue-Morse sequence.Let Fm(x)=(F(x))m=(∏∞n=0(1-x2n))m≔∑∞n=0tm(n)xn.In 2018,Gawron,Miska and Ulas proposed a conjecture on the unboundedness of the sequence{tm(n)}∞n=1 for m≥2.They also proved this conjecture for m=3 and m=2k by studying the 2-adic of tm(n),where k is a positive integer.In this paper,we intro-duce a new method for this conjecture.In this method,a class of anti-centrosymmetric matrices are firstly ob-tained by studying the recursive relation of tm(n).Then the conjecture may be proved by calculating the ei-genvalues of the matrices.In particular,we prove the conjecture for m=5 and 6 by presenting unbounded sub-sequences of{t5(n)}∞n=1 and{t6(n)}∞n=1.Meanwhile,we also partially prove another conjecture on the 2-adic values of t5(n)by calculating the 2-adic value of a sub-sequence of{t5(n)}∞n=1.

Prouhet-Thue-Morse sequenceUnboundednessEigenvalue

朱朝熹、赵伟

展开 >

保密通信全国重点实验室, 成都 610041

Prouhet-Thue-Morse 序列 无界性 特征值

保密通信重点实验室项目

61421030111012101

2024

四川大学学报(自然科学版)
四川大学

四川大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.358
ISSN:0490-6756
年,卷(期):2024.61(2)
  • 10