首页|一种利用对抗样本提高抽取式阅读理解模型效果的方法

一种利用对抗样本提高抽取式阅读理解模型效果的方法

扫码查看
抽取式阅读理解是自然语言处理的重要任务,需要机器在阅读理解自然语言文本的基础上,从中抽取给定问题的答案(输入文本中的片段),并在问题不可回答时拒绝回答。这种不可回答情况的存在使机器阅读理解更具有挑战性,特别是在输入文本含有似是而非文本片段时,现有模型很容易将这样的片段混淆为问题答案,进而错误判断问题的可回答性。为了进一步提高抽取式机器阅读理解模型的效果,本文将SQuAD 2。0数据集中的似是而非答案看成对抗样本,将其既作为答案文本片段抽取的正例,也作为问题可回答性的负例,在现有模型答案交叉熵损失的基础上增加排序损失。在SQuAD 2。0上进行的实验表明,本文方法可以提高现有模型的阅读理解能力,明显提升可回答性判断及答案文本片段抽取的效果。
A method of improving the performance of extractive reading comprehension model by using adversarial samples
Extractive machine reading comprehension is a crucial task in natural language processing,where machines are required to extract the answer(fragments in inputting text)to a given question on the base of reading and understanding natural language text,and refuse to provide any answer when the given question is unanswerable.The task becomes more challenging when faced with unanswerable questions,where machines should refrain from providing any answer,especially when an inputting text contains plausible text fragments.Existing models are easily confused such fragments as an answer to the given question,and then wrongly judge answerability of question.To further improve the effect of extractive machine reading comprehension model,this paper takes plausible answers in SQuAD 2.0 dataset as the adversarial samples,which are used as positive examples extracted from text fragments of the answer and negative examples for judging answer-ability of question.Thus,this method increases the ranking loss based on the cross-entropy loss of the an-swers in the existing models.Experiments on SQuAD 2.0 shows that the proposed method can improve ro-bustness of existing extractive machine reading comprehension models,and significantly improve the effect of answerability judgment and extraction of text fragments about answer.

Reading comprehensionUnanswerable questionAdversarial samples

何东、于晓昕、叶子铭、于中华、陈黎

展开 >

四川大学计算机学院, 成都 610065

阅读理解 不可回答问题 对抗样本

四川省重点研发计划

2023YFG0265

2024

四川大学学报(自然科学版)
四川大学

四川大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.358
ISSN:0490-6756
年,卷(期):2024.61(2)
  • 20