首页|基于因果反馈的缺失数据集因果关系发现

基于因果反馈的缺失数据集因果关系发现

扫码查看
因果关系发现是因果推断的重要部分,其目标是揭示数据内在的生成机制,并以有向无环图的形式表示。然而关于因果关系发现,现有方法很少考虑到观察数据存在缺失值的情况。在实际场景中,大量数据集存在缺失值,因此估计缺失数据集中的因果关系成为一个亟需解决的问题。本文提出了一种新的基于因果反馈的算法实现关于缺失数据集的因果关系发现,其中生成对抗网络被用于估计缺失数据集的分布,并利用基于Actor-Critic的因果关系发现模块搜索最优因果图,设计了一个基于扩展贝叶斯信息准则的自定义奖励函数,引入分类误差引导模型加速探索过程,提升模型稳定性。在模拟数据和真实数据上进行的大量实验结果表明,本文提出的方法在不同数据缺失率下优于现有方法。
Causal feedback-based imputation causal discovery
Causal discovery is an important part of causal inference and the goal is to discover the data genera-tion mechanism in the form of Directed Acyclic Graphs(DAGs).With regard to causal discovery,existing methods rarely take into account the presence of missing values in observational data.However,incomplete datasets are ubiquitous in practical scenarios,and figuring out the causal relationships in incomplete datasets has become a critical issue to be solved.In this paper,a new Causal Feedback-based Imputation Causal Dis-covery(CF-ICD)algorithm is proposed to achieve causal discovery of incomplete data sets.Generative Ad-versarial Networks(GAN)are used to estimate the distribution of missing data.The causal learning module based on Actor-Critic is used to search the optimal DAG,and a custom reward function based on the ex-tended Bayesian Information Criteria(eBIC)is designed.Classification error is introduced to guide the model to accelerate the exploration process and improve the stability.Extensive experimental results on simu-lated data and real data show that the proposed method is superior to existing methods under different data missing rates.

Deep learningData imputationCausal discoveryDirected Acyclic Graph

马从锂、黄飞虎、弋沛玉、王琳娜、彭舰

展开 >

四川大学计算机学院, 成都 610065

深度学习 缺失数据补全 因果关系发现 有向无环图

四川大学博士后交叉学科建设项目四川省重点实验室开放基金四川省科技厅项目四川省科技厅项目

10822041A2137SCITLAB-200012023YFG01122022YFG0034

2024

四川大学学报(自然科学版)
四川大学

四川大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.358
ISSN:0490-6756
年,卷(期):2024.61(2)
  • 33