首页|基于特征融合的加密Tor流量检测方法

基于特征融合的加密Tor流量检测方法

扫码查看
匿名网络是目前保护个人隐私的常用工具,结合混淆网桥组件后具备极强的隐私保护能力;信息对抗中的持续博弈使得在匿名网络中运用加密代理成为数据安全敏感用户实现隐私保护的主要手段。匿名网络和加密代理双重保护让流量检测面临以下两个方面的挑战和问题:(1)代理汇聚:经过加密代理之后的流量呈现单流特性,导致基于完整数据流的流量检测方法失效;(2)特征模糊:数据包混淆机制使得数据流特征稀疏化,导致基于低阶统计特征的方法效果减弱。本文提出了一种名为SETTDM的流量检测方法来应对上述两种挑战。具体而言,针对代理汇聚问题,采用基于滑动窗口的方式拆分数据子流,使得SETTDM方法能应用于因代理产生的聚合数据流并尽可能地保留了原始数据流的特征空间;针对特征模糊问题,提出基于特征融合的特征提取方法:多角度的统计时序特征结合ResNet提取的加密空间特征。在实验中采集了真实的二次加密Tor流量、加密背景流量和未加密背景流量,并融合公开加密流量数据集 ISCXVPN2016 组成实验数据集;经测试,SETTDM 方法可以达到99。78%的精确率,相比对比方法有着2。30%~9。29%的提升。
Encrypted Tor Traffic detection method based on feature fusion
An anonymous network is a common tool to protect personal privacy currently.It has strong pri-vacy protection ability when combined with obfuscation bridge component.The continuous game of informa-tion confrontation has made the use of encryption proxies in anonymous networks as the primary method to protect privacy of data security sensitive users.The dual protection of an anonymous network and encryption proxy makes traffic detection encounter the following challenges and issues:(1)Proxy convergence:the traf-fic after the encryption proxy presents single-stream characteristics,resulting in the failure of the traffic detec-tion method based on the complete data stream.(2)Fuzzy features:data packet obfuscation mechanism makes data stream features sparse,which weakens the effect of methods based on low-order statistical fea-tures.This paper proposes a traffic detection method named SETTDM to address these two challenges.Addi-tionally,to solve the agent aggregation problem,a sliding window-based method is used to split data sub-streams,so that the SETTDM method can be applied to the aggregated data streams generated by agents and the feature space of the original data streams is preserved as far as possible.To solve the problem of feature ambiguity,a feature extraction method based on feature fusion was proposed:multi-angle statistical timing features combined with encryption space features extracted by ResNet.In the experiment,real secondary en-crypted Tor traffic,encrypted background traffic and unencrypted background traffic were collected,and pub-lic encrypted traffic data set ISCXVPN2016 was fused to form the experimental data set.The testing results show that the SETTDM method achieves a precision rate of 99.78%,demonstrating an improvement of 2.30%to 9.29%compared to the benchmark methods.

Encrypted trafficAnonymous trafficPrivacy protectionFeature fusion

李常亮、王俊峰、方智阳、孙贺

展开 >

四川大学计算机学院,成都 610065

四川大学网络空间安全学院,成都 610065

中国人民解放军96901部队,北京 100094

加密流量 匿名网络流量 隐私保护 特征融合

国家重点研发计划国家自然科学基金四川省青年科技创新研究团队项目四川省自然科学基金四川省重点研发计划

2019QY1400U21332082022JDTD00142023NSFSC14012023YFG0290

2024

四川大学学报(自然科学版)
四川大学

四川大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.358
ISSN:0490-6756
年,卷(期):2024.61(3)