首页|基于混合机器学习模型的地层电阻率反演及不确定性分析

基于混合机器学习模型的地层电阻率反演及不确定性分析

扫码查看
在大位移井及水平井钻探过程中,建立有效的反演模型从随钻测井资料中快速准确地获取地层信息,对地质导向工作意义重大。随着机器学习技术的发展,利用机器学习方法进行地球物理反演已得到广泛应用。但主要集中在确定性方法上,难以评估反演结果的可靠性。评估反演结果的可靠性至关重要,这种评估可以通过不确定性估计来实现。本文利用NG-Boost算法构建概率反演模型用以量化反演结果的不确定性。选择合适的机器学习模型作为NGBoost算法的基学习器,构建混合机器学习模型可提升反演结果的准确度。根据随钻方位电磁感应测井仪器在层状各向同性地层中的测井资料,本文对比六种不同的机器学习模型在地层电阻率反演中的表现,实验表明XGBoost算法在反演精度和速度等方面具有明显优势。将XGBoost算法作为基学习器与NGBoost算法框架相结合构建N-XGBoost概率反演模型。并通过仿真实验对该概率反演模型的准确性、可靠性、鲁棒性进行验证,结果表明该模型能够有效评估反演结果的不确定性并获得可靠的反演结果,该方法将为地质导向工作提供可靠的测井解释。
Formation resistivity inversion and uncertainty analysis based on hybrid machine learning model
In the process of extended reach wells and horizontal wells,it is of great significance for geosteer-ing work to quickly and accurately extract stratigraphic information from the logging data of LWD tools by es-tablishing an effective inversion model.Machine learning has emerged as a widely adopted approach to ad-dress geophysical inversion problems.However,evaluating the reliability and uncertainty of inversion results proves challenging due to the predominant focus on deterministic methods.Hence,assessing the reliability of inversion outcomes becomes critical,and this can be accomplished through uncertainty estimation.In this pa-per,we utilize the NGBoost algorithm to construct a probabilistic inversion model to quantify the uncertainty associated with inversion results.By selecting a suitable machine learning model as the base learner of the NG-Boost algorithm,a hybrid machine learning model is constructed,thereby enhancing the accuracy of the inver-sion results.The performance of six different machine learning models for formation resistivity inversion is compared using the logging data of the drilling azimuthal electromagnetic induction logging instrument in lay-ered isotropic formations.The experiment resluts demostrate the pronounced advantage of XGBoost algo-rithm in terms of inversion accuracy and speed.The XGBoost algorithm as a base learner is combined with the NGBoost algorithm framework to construct the N-XGBoost probabilistic inverse model,Simulative ex-periments are conducted to verify the accuracy,reliability,and robustness of the N-XGBoost probabilistic in-version model.The results substantiate the effectiveness of the proposed model in evaluating the uncertainty of inversion results and yielding dependable inversion outcomes.This approach will provide reliable logging interpretation for geosteering work.

GeosteeringMachine learningResistivity inversionUncertainty analysis

钱雨卿、贺之莉

展开 >

长安大学信息工程学院,西安 710064

地质导向 机器学习 电阻率反演 不确定性分析

国家自然科学基金

42074170

2024

四川大学学报(自然科学版)
四川大学

四川大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.358
ISSN:0490-6756
年,卷(期):2024.61(3)