首页|一种用于DBMS模糊测试的自适应变异策略

一种用于DBMS模糊测试的自适应变异策略

扫码查看
数据库管理系统(DBMS)被广泛应用于各个领域,并在其中发挥着不可替代的作用。因此发现DBMS中的bug,防止其被攻击者利用至关重要。为了检测DBMS中潜藏的bug,研究者提出了DBMS模糊测试技术。使用这项技术,研究者成功在DBMS中发现了大量bug。然而现有的DBMS模糊测试技术依然存在一定的局限性。现有的技术在对SQL语句的抽象语法树(AST)进行变异时,没有根据不同节点和变异结果的重要性分配计算资源,而是采取了一种平均分配的策略,这降低了测试的效率。为了解决这个问题,本文提出了一种使用基于语法信息的变异方法的自适应变异策略。这种变异策略能够自动计算不同节点和变异结果的重要性,并根据重要性为更重要的操作分配更多的计算资源。基于语法信息的变异方法可以将变异操作与变异结果直接关联,消除了变异操作和变异结果之间的偏差。我们在一种新的DBMS模糊测试工具Pinecone中实现了这种变异策略,并使用Pinecone对两款广泛使用的DBMS进行测试。实验证明,与Squirrel相比,Pinecone在MariaDB和MySQL中发现的路径数分别提升了4。52%和19。4%,位图覆盖率分别提升了15%和13。8%,发现的Bug数量提升了26。7%和75%,这证明了本文提出的方法可以有效提升模糊测试的效率。
An adaptive mutation strategy for DBMS fuzzing
Database management systems(DBMS)are widely used in various fields and play an irreplace-able role.Therefore,it is crucial to discover bugs in DBMS and prevent them from being exploited by attack-ers.In order to detect hidden bugs in DBMS,researchers have proposed DBMS fuzzing.By using this tech-nology,Researchers have successfully discovered a large number of bugs in DBMS.However,existing DBMS fuzzing still have certain limitations.When mutating the Abstract Syntax Tree(AST)of SQL state-ments,existing DBMS fuzzing can't allocate computing resources based on the importance of different nodes and mutation results,but adopt an average allocation strategy.This reduces the efficiency of fuzzing.To ad-dress this issue,this article proposes an adaptive mutation strategy using a syntax-information-based mutation method.This mutation strategy can automatically calculate the importance of different nodes and mutation re-sults,and allocate more computing resources for more important operations based on their importance.Syntax-information-based mutation method can directly associate mutation operations with mutation results,and eliminates deviation between mutation operations and mutation results.The paper implement this muta-tion strategy in a new DBMS fuzzer,Pinecone,and test two widely used DBMS using Pinecone.The experi-ment showed that compared with Squirrel,Pinecone found 4.52%and 19.4%more paths,15%and 13.8%more bitmap coverage,and 26.7%and 75%more bugs in MariaDB and MySQL respectively.This proves that the proposed method can effectively improve the efficiency of DBMS fuzzing.

DBMS fuzzingSquirrelSyntax informationAdaptive mutation strategy

问欣、方勇、贾鹏、范希明

展开 >

四川大学网络空间安全学院,成都 610065

DBMS模糊测试 Squirrel 语法信息 自适应变异策略

国家重点研发计划

2021YFB3101803

2024

四川大学学报(自然科学版)
四川大学

四川大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.358
ISSN:0490-6756
年,卷(期):2024.61(3)