首页|考虑不确定能耗和个性化客户需求的电动冷藏车辆路径优化

考虑不确定能耗和个性化客户需求的电动冷藏车辆路径优化

扫码查看
在国家"双碳"战略下,采用电动冷藏车替代传统燃油车,开展城市冷链配送是大势所趋。电动冷藏车配送作业易受诸多不确定因素的影响,导致电能消耗难以精准估算。如何在能耗不确定条件下确保车辆电池续航里程能完成配送任务,并满足客户对产品新鲜度和个性化时间窗的需求,是电动冷藏车辆路径优化面临的挑战。本文借助车辆纵向动力学模型和微分方程及鲁棒优化理论分析了电动冷藏车配送作业中的能耗影响因素,如电池续航能力限制、能耗不确定性、产品新鲜度和客户软时间窗约束等,及其产生的各项成本,构建了以总成本最小为目标的两阶段路径优化模型,并设计混合遗传粒子群算法对模型求解,最后以案例验证了模型和算法的有效性。
Route optimization of electric refrigerated vehicle considering energy consumption uncertainty and personalized customer demand
To achieve China's carbon peak and neutrality goals,using electric refrigerated vehicles to replace traditional fuel vehicles to carry out urban cold chain distribution becomes a general trend.However,the dis-tribution operation of electric refrigerated vehicles is vulnerable to many uncertain factors,which makes it dif-ficult to accurately estimate the power consumption.How to ensure that the battery life of the vehicle can com-plete the distribution task and effectively meet customer's demand for product freshness and personalized time window under the condition of uncertain energy consumption is a challenge for the route optimization of elec-tric refrigerated vehicles.In this study,a two-stage vehicle path optimization model with the goal of minimiz-ing the total cost is constructed by comprehensively considering the battery life limit,energy consumption un-certainty,product freshness and customer soft time window constraints.Specifically,based on the force analysis of the driving process of electric refrigerated vehicles using the vehicle longitudinal dynamics model,the driving energy consumption model and auxiliary energy consumption model are put forward to get the to-tal energy consumption model of vehicle distribution operation.Furthermore,the robust optimization method is used to deal with the uncertain parameters in the model.A hybrid genetic particle swarm optimization algo-rithm is designed to solve the model.Finally,an actual case is used to verify the effectiveness of the model and algorithm.

Electric refrigerator vehicleVehicle routing optimizationEnergy consumptionUncertaintyHybrid genetic particle swarm optimization algorithm

甘俊伟、李钧、罗永、廖虎昌

展开 >

四川旅游学院经济管理学院,成都 610100

成都绿色低碳发展研究基地,成都 610100

四川大学商学院,成都 610064

电动冷藏车 车辆路径优化 能耗 不确定性 混合遗传粒子群算法

国家自然科学基金四川省哲学社会科学基金四川省社会科学重点研究基地四川省电子商务与现代物流研究中心项目四川省哲学社会科学重点研究基地川菜发展研究中心项目四川省高等学校人文社会科学重点研究基地四川民族山地经济发展研究中心一般项目四川旅游学院冷链物流科研创新团队项目

72171158SCJJ23ND158DSWL-1CC22G02SDJJ20221621SCTUTY08

2024

四川大学学报(自然科学版)
四川大学

四川大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.358
ISSN:0490-6756
年,卷(期):2024.61(3)