首页|基于CT图像的深度神经网络肺功能预测

基于CT图像的深度神经网络肺功能预测

扫码查看
我国流行病学调查结果显示,以慢阻肺和哮喘为代表的慢性呼吸系统疾病患病率高且呈现上升的趋势,给公共卫生健康带来了严重威胁。目前,计算机断层扫描(CT)作为一种方便、无创的方法被广泛应用于肺功能的评估。在基于CT图像的计算机辅助评估肺功能的方法中,人工设计的特征存在表达能力有限的问题,且现有的深度学习方法从高噪稀疏的小样本数据集中提取特征的效果较差。为了提高肺功能检查的效率,本文提出了基于CT图像的肺功能预测网络(LFP-ResNet)。首先,本文提出了多层次上下文特征融合(MCFF)方法,有效增强了对表征肺部纹理和形态的特征提取;其次,利用三维残差网络充分保证了CT图像的空间异质性;最后,本文构建了包含肺功能正常人群和患有慢性呼吸系统疾病患者的肺功能数据集,并在该数据集上对比了本工作提出的方法以及其他先进的肺功能预测方法。实验结果表明,本文提出的MCFF策略在含噪声的稀疏矩阵中提取特征时比其他特征提取方法更有效,且所构建的LFP-ResNet在肺功能预测任务中表现出更好的预测性能。
Deep neural networks based lung function prediction using CT images
The latest epidemiological survey reveals a high and escalating prevalence rate of chronic respira-tory diseases,such as Chronic obstructive pulmonary disease(COPD)and asthma,posing a significant public health threat.Computer tomography(CT)has emerged as a convenient and noninvasive method for evaluat-ing pulmonary function,however,in existing computer-aided lung function evaluation method,handcrafted methods are insufficient and existing neural network methods are less effective in extracting features from small datasets with high noise and sparse data.In this study,a lung function prediction network(LFP-ResNet)is introduced to predict lung function from CT images.Firstly,a multi-level contextual feature fusion(MCFF)method is proposed to extract diverse features that represent the pulmonary texture and morphology effectively.Secondly,a three-dimensional(3-D)residual network is used to guarantee the spatial heterogene-ity of CT image sufficiently.Finally,a dataset containing both healthy population and patients with chronic re-spiratory diseases are constructed and used to compare the proposed methods with other state-of-the-art meth-ods.The results demonstrate that the proposed MCFF strategies are more efficient in extracting features from a sparse matrix with noise than other feature extraction methods.Moreover,the constructed LFP-ResNet ex-hibits better predictive performance in the pulmonary function prediction task.

Computed tomographyDeep learningMulti-task learningPulmonary function testChronic obstructive pulmonary disease

杜秋雨、陈楠、郭际香、章毅、刘伦旭、徐修远

展开 >

四川大学计算机学院,成都 610065

四川大学华西医院胸外科,成都 610041

计算机断层扫描 深度学习 多任务学习 肺功能检查 慢性阻塞性肺疾病

国家自然科学基金四川省自然科学基金面上项目中国人工智能学会-华为MindSpore学术奖励基金

621061632023YFG028321H1235

2024

四川大学学报(自然科学版)
四川大学

四川大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.358
ISSN:0490-6756
年,卷(期):2024.61(4)
  • 2