首页|一种基于强化学习的软件安全实体关系预测方法

一种基于强化学习的软件安全实体关系预测方法

扫码查看
为改善现有基于翻译的软件安全知识图谱实体关系预测方法不具备可解释性,而基于路径推理的方法准确性不高的现状,本研究提出一种基于强化学习的预测方法。该方法首先分别使用TuckER模型和SBERT模型将软件安全知识图谱的结构信息和描述信息表示为低维度向量,接着将实体关系预测过程建模为强化学习过程,将TuckER模型计算得到的得分引入强化学习的奖励函数,并且使用输入的实体关系向量训练强化学习的策略网络,最后使用波束搜索得到答案实体的排名列表和与之对应的推理路径。实验结果表明,该方法给出了所有预测结果相应的关系路径,在链接预测实验<h,r,?>中hit@5 为 0。426,hit@10 为0。797,MRR为0。672,在事实预测实验中准确率为0。802,精确率为0。916,在准确性方面与同类实体关系预测模型相比具有不同程度的提升,并且通过进行可解释性分析实验,验证了该方法所具备的可解释性。
A method for predicting software security entity relationships based on reinforcement learning
Existing methods for entity relation prediction in translation-based software security knowledge graph lack interpretability,while those based on path reasoning exhibit low accuracy.To alleviate this issue,a reinforcement learning-based prediction method is proposed.This method first represents the structural in-formation and descriptive information of the software security knowledge graph as low-dimensional vectors us-ing the TuckER model and SBERT model respectively.Then,it models the entity relation prediction process as a reinforcement learning process,integrating the scores computed by the TuckER model into the reward function of reinforcement learning.The method further employs input entity relation vectors to train the policy network of reinforcement learning.Finally,it utilizes beam search to obtain ranked lists of answer entities and corresponding inference paths.Experimental results demonstrate that this method provides relation paths for all predicted results.In link prediction experiments(h,r,?),the hit@5 is 0.426,hit@10 is 0.797,and MRR is 0.672.In fact prediction experiments,the accuracy is 0.802,and precision is 0.916.In terms of ac-curacy,compared with similar entity relation prediction models,this method shows varying degrees of im-provement.Furthermore,through interpretability analysis experiments,the interpretability of this method is validated.

Software security entity relationshipReinforcement learningLink predictionKnowledge graphExplainable reasoning

杨鹏、刘亮、张磊、刘林、李子强、贾凯

展开 >

四川大学网络空间安全学院,成都 610207

中国信息安全测评中心,北京 100085

长安通信科技有限公司,北京 102209

中征(北京)征信有限责任公司,北京 100044

展开 >

软件安全实体关系 强化学习 链接预测 知识图谱 可解释推理

四川省科技计划专职博士后研发基金

2022YFG0171SCU221092

2024

四川大学学报(自然科学版)
四川大学

四川大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.358
ISSN:0490-6756
年,卷(期):2024.61(4)
  • 1