首页|基于多线程的岩心图像超维重建快速算法

基于多线程的岩心图像超维重建快速算法

扫码查看
针对基于邻域块匹配的超维算法在重建过程中每次只能对1个待重建块进行重建,并且字典搜索过程十分耗时导致重建效率低的问题,本文提出了2种方法来对基于邻域块匹配的超维算法进行计算速度的优化。首先,将分区域重建应用到基于邻域块匹配的超维算法中,提出了分区域并行重建算法,实现了对多个待重建块同时进行重建;其次,在对每次字典元素搜索的过程中,使用了字典并行搜索,实现了这一过程的加速;最后将这2种方法进行结合,并且通过高中低3种不同孔隙度的训练图像生成的字典来对二维参考图像进行多次重建。通过将本文提出的算法、基于邻域块匹配的超维算法以及一些传统重建算法的重建结果和真实岩心三维结构的统计特征参数进行对比并且将不同重建算法的重建时间进行对比,来验证本文改进的超维算法的有效性。
A fast algorithm for super-dimension reconstruction of core images based on multithreading
To tackle the limitation of the super-dimension algorithm based on adjacent block matching,where only allows one block to be reconstructed at a time during the reconstruction process,and the time-consuming dictionary search significantly hampers its efficiency,this paper proposesed two methods to opti-mize the computational speed of super-demension algorithms.Firstly,the sub-region reconstruction approach was applied to the super-dimensional algorithm based on adjacent block matching,introducing a region-based parallel reconstruction algorithm that enables simultaneous reconstruction of multiple blocks;Secondly,in the process of searching for each dictionary element,a dictionary parallel search matching method is em-ployed to accelerate its process;Finally,these two algorithms are combined,and 3D reconstruction based on 2D images was preformed for multiple times through the dictionary generated by the three different porosity training images.Through comparing the reconstruction results of the proposed algorithm,the adjacent block matching-based super-demension algorithm,and some traditional reconstruction algorithms,along with statis-tical feature parameters of the real three-dimensional structure of rock cores,and by comparing the reconstruc-tion time-consuming of different algorithms,the computational effectiveness of the improved super-demension algorithm presented in this paper was validated.

3D reconstructionSuper-dimension algorithmPorous mediumParallel algorithmMulti-threading

庞钊、滕奇志、马振川、吴晓红

展开 >

四川大学电子信息学院,成都 610065

三维重建 超维重建 多孔介质 并行算法 多线程

国家自然科学基金

62071315

2024

四川大学学报(自然科学版)
四川大学

四川大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.358
ISSN:0490-6756
年,卷(期):2024.61(4)
  • 19