首页|基于坐标注意力关系网络的小样本轴承故障诊断

基于坐标注意力关系网络的小样本轴承故障诊断

扫码查看
轴承故障诊断对保障机械设备正常运转具有重要价值,基于机器学习的轴承故障诊断是其中一类常用方法,主要包括Alexnet、Resnet-18、关系网络、基于通道注意力SENet的关系网络(SERN)以及基于混合注意力CBAM的关系网络(CBRN)等。在实际应用中,小样本、变工况等可能导致这些方法出现泛化性能差、精度降低及过拟合等问题。本文提出了一种基于坐标注意力关系网络的小样本轴承故障诊断方法。在该方法中,坐标注意力关系网络通过坐标信息的嵌入和坐标注意力的生成来解决关系网络模型无法建立特征图的长距离依赖关系及故障的特征位置信息难以获得的问题,增强模型在目标区域对故障特征的表达,进而重构出更具判别性的故障样本特征。该方法还采用特征嵌入模块来生成样本的特征向量,并通过对已标记样本和未标记样本的特征向量的拼接来生成特征向量组。最后,该方法利用关系得分模块对特征向量组进行非线性距离度量和生成关系得分,判断未标记样本的类别、实现故障分类。模拟实验表明,相比已有方法,该方法具有更好的分类能力。
Few-shot bearing fault diagnosis based on coordinate attention relation network
Bearing fault diagnosis is of great significance to ensure the normal operation of machinery.Nowa-days,fault diagnosis methods based on machine learning such as Alexnet,Resnet-18,Relation Network,Re-lation Network based on Channel Attention SENet(SERN)and Relation Network based on Mixed Atten-tion CBAM(CBRN)are extensively utilized.However,the performance of these methods can be seriously damaged by small samples and changing working conditions existing in practical engineering applications,and even the problem of overfitting can be resulted.In this paper,based on the coordinate attention network,a novel bearing fault diagnosis method is proposed for overcoming these problems.By embedding the coordi-nate information and generating coordinate attention,a coordinate attention relationship network is con-structed to solve the problem that the relational network model cannot be used to establish the long-distance dependence between feature map and fault feature location information,enhance the model's expression on fault features in the target region and reconstruct more discriminative fault sample features.Then,a feature embedding module is used to generate the feature vector of samples,by which the labeled samples and unla-beled samples can be spliced to generate the feature vector group.Finally,a relationship score module is used to measure the nonlinear distance of feature vector group,generate the relationship score and judge the class of unlabeled samples to achieve fault classification.Simulation results show that,comparing with the known methods,the proposed method has better classification performance on small sample bearing data sets.

Few-shot learningRelation networkFault diagnosisCoordinate attention mechanismBearing

郭敏、陈鹏、周超、胡国宾、范青荣

展开 >

武汉理工大学机电工程学院,武汉 430070

华中科技大学机械科学与工程学院,武汉 430074

小样本学习 关系网络 故障诊断 坐标注意力机制 轴承

国家重点研发计划

2022YFB4701500

2024

四川大学学报(自然科学版)
四川大学

四川大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.358
ISSN:0490-6756
年,卷(期):2024.61(4)
  • 4