首页|基于改进生成对抗网络的半监督语义分割

基于改进生成对抗网络的半监督语义分割

扫码查看
为了解决对抗式半监督语义分割网络在训练过程中稳定性较差,传统语义分割网络难以对像素之间远距离依赖关系建模等问题,提出了一种结合谱归一化生成对抗网络和坐标注意力机制的半监督语义分割网络。利用谱归一化使对抗网络判别器满足利普西茨连续性,从而提高了网络训练过程的稳定性且避免了梯度消失的问题;在分割网络中融入坐标注意力机制,使网络能够获取远距离像素之间的依赖关系,并扩大感受野。与基准模型相比,在PASCAL VOC 2012 增强数据集中采用 1/50、1/20和 1/8标记数据集时,MIoU分别提升了2。2%、1。4%和 1。8%;在Cityscapes城市街景数据集中采用 1/8、1/4和 1/2标记数据集时,MIoU分别提升了1。9%、2。1%和1。3%。实验结果证明,与其他基于对抗学习的半监督语义分割网络相比,该算法在半监督语义分割任务中具有较好的稳定性和准确性。
Semi-supervised semantic segmentation based on improved generative adversarial networks
During the training process,adversarial semi-supervised semantic segmentation networks likely have poor convergence stability and may not model the remote dependence between pixels.In order to solve these problems,a semi-supervised semantic segmentation network is proposed to apply spectral normalization to generative adversarial networks and coordinate attention mechanisms.The spectral normalization is used to make the discriminator of the adversarial network satisfy the Lipsitz continuity,so as to improve the stability of the training process and avoid the problem of gradient disappearance.In addition,the coordinate attention mechanism is integrated into the segmentation network,so as to enable the network to obtain the dependence between distant pixels and enlarge the receptive field.Compared to the benchmark model,when using the 1/50,1/20,and 1/8 labeled datasets in the PASCAL VOC 2012 enhanced dataset,the proposed method im-proves MIoU by 2.2%,1.4%,and 1.8%,respectively.When the 1/8,1/4,and 1/2 labeled datasets in Cityscapes,the proposed method improves MIoU by 1.9%,2.1%,and 1.3%,respectively.The experi-mental results demonstrate that,in comparison with other semi-supervised semantic segmentation networks based on adversarial learning,the proposed algorithm exhibits superior stability and accuracy in semi-supervised semantic segmentation tasks.

Semantic segmentationSemi-supervised learningGenerative adversarial networkSpectrum normalizationAttention mechanism

王小成、胡亚琦、王一中

展开 >

兰州交通大学电子与信息工程学院,兰州 730070

语义分割 半监督学习 生成对抗网络 谱归一化 注意力机制

国家自然科学基金

62362047

2024

四川大学学报(自然科学版)
四川大学

四川大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.358
ISSN:0490-6756
年,卷(期):2024.61(5)