首页|赖特函数的数值算法实现及其性能分析

赖特函数的数值算法实现及其性能分析

Numerical algorithm implementation and performance analysis of the Wright function

扫码查看
针对赖特函数的快速有效高精度计算及显示的问题,研究并实现四种数值算法:累加算法、分区算法、拉式反演算法和超几何表示算法.利用MATLAB软件进行编程仿真,绘制、显示赖特函数图像,分析对比算法性能.实验结果表明,超几何表示算法的计算精度最好,分区算法的适用性最广,拉式反演算法和累加算法计算速度快.
This study aims to investigate and implement four numerical algorithms,namely the accumulative algorithm,the partitioning algorithm,the Laplace inversion algorithm,and the hypergeometric representa-tion algorithm.These algorithms are designed to explore fast and effective high precision arithmetic calcula-tion and display of the Wright function.The Wright function is visualized and presented through MATLAB software programming and simulation,enabling the analysis and comparison of performance among four algo-rithms.The experimental results demonstrate that the hypergeometric representation algorithm exhibits supe-rior computational accuracy,while the partition algorithm demonstrates extensive applicability.Additionally,both the Laplace inversion algorithm and the accumulation algorithm showcase remarkable computational speed.

Fractional calculusSpecial functionAlgorithm analysisPartition algorithmMATLAB

李燕、袁晓

展开 >

四川大学电子信息学院,成都 610065

分数微积分 特殊函数 算法分析 分区算法 MATLAB

国家自然科学基金

62171303

2024

四川大学学报(自然科学版)
四川大学

四川大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.358
ISSN:0490-6756
年,卷(期):2024.61(5)