首页|赖特函数的数值算法实现及其性能分析

赖特函数的数值算法实现及其性能分析

扫码查看
针对赖特函数的快速有效高精度计算及显示的问题,研究并实现四种数值算法:累加算法、分区算法、拉式反演算法和超几何表示算法。利用MATLAB软件进行编程仿真,绘制、显示赖特函数图像,分析对比算法性能。实验结果表明,超几何表示算法的计算精度最好,分区算法的适用性最广,拉式反演算法和累加算法计算速度快。
Numerical algorithm implementation and performance analysis of the Wright function
This study aims to investigate and implement four numerical algorithms,namely the accumulative algorithm,the partitioning algorithm,the Laplace inversion algorithm,and the hypergeometric representa-tion algorithm.These algorithms are designed to explore fast and effective high precision arithmetic calcula-tion and display of the Wright function.The Wright function is visualized and presented through MATLAB software programming and simulation,enabling the analysis and comparison of performance among four algo-rithms.The experimental results demonstrate that the hypergeometric representation algorithm exhibits supe-rior computational accuracy,while the partition algorithm demonstrates extensive applicability.Additionally,both the Laplace inversion algorithm and the accumulation algorithm showcase remarkable computational speed.

Fractional calculusSpecial functionAlgorithm analysisPartition algorithmMATLAB

李燕、袁晓

展开 >

四川大学电子信息学院,成都 610065

分数微积分 特殊函数 算法分析 分区算法 MATLAB

国家自然科学基金

62171303

2024

四川大学学报(自然科学版)
四川大学

四川大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.358
ISSN:0490-6756
年,卷(期):2024.61(5)