赖特函数的数值算法实现及其性能分析
Numerical algorithm implementation and performance analysis of the Wright function
李燕 1袁晓1
作者信息
- 1. 四川大学电子信息学院,成都 610065
- 折叠
摘要
针对赖特函数的快速有效高精度计算及显示的问题,研究并实现四种数值算法:累加算法、分区算法、拉式反演算法和超几何表示算法.利用MATLAB软件进行编程仿真,绘制、显示赖特函数图像,分析对比算法性能.实验结果表明,超几何表示算法的计算精度最好,分区算法的适用性最广,拉式反演算法和累加算法计算速度快.
Abstract
This study aims to investigate and implement four numerical algorithms,namely the accumulative algorithm,the partitioning algorithm,the Laplace inversion algorithm,and the hypergeometric representa-tion algorithm.These algorithms are designed to explore fast and effective high precision arithmetic calcula-tion and display of the Wright function.The Wright function is visualized and presented through MATLAB software programming and simulation,enabling the analysis and comparison of performance among four algo-rithms.The experimental results demonstrate that the hypergeometric representation algorithm exhibits supe-rior computational accuracy,while the partition algorithm demonstrates extensive applicability.Additionally,both the Laplace inversion algorithm and the accumulation algorithm showcase remarkable computational speed.
关键词
分数微积分/特殊函数/算法分析/分区算法/MATLABKey words
Fractional calculus/Special function/Algorithm analysis/Partition algorithm/MATLAB引用本文复制引用
出版年
2024