首页|小样本条件下多功能雷达工作模式识别方法

小样本条件下多功能雷达工作模式识别方法

扫码查看
在日益复杂的电磁环境中,多功能雷达工作模式识别仍然面临着诸多挑战。针对多功能雷达的截获信号样本数量有限,样本增强质量差,导致工作模式识别准确率较低的问题。本文提出一种将自适应填充转换生成对抗网络与模型无关元学习联合驱动的识别方法。首先,从贴合小样本数据状态出发,采用自适应填充转换生成对抗网络模型进行自适应样本填充和样本增强;然后结合元学习中模型无关元学习算法,从而实现在小样本条件下多功能雷达工作模式的识别。最后,仿真结果表明,相较于生成对抗网络结合模型无关元学习的算法和支持向量机分类器,本文所提方法识别准确率分别提升了2。39%和17。42%。验证了该方法在小样本条件下针对多功能雷达工作模式进行准确识别的有效性。
Method for multi-functional radar operational mode recognition under small-sample conditions
In increasingly complex electromagnetic environments,the recognition of multifunction radar oper-ating modes continues to face numerous challenges.In particular,the limited number of intercepted signal samples from multifunction radars,combined with poor sample augmentation quality,leads to low accuracy in operating mode recognition.This approach is driven by the synergy of Adaptive Padding TransGAN(Gen-erative Adversarial Network with Adaptive Padding)and Model-Agnostic Meta-Learning.Initially,The Adaptive Padding TransGAN is employed for adaptive sample padding and sample augmentation,starting with the context of fitting small-sample data.Subsequently,the Model-Agnostic Meta-Learning algorithm in meta-learning is integrated to achieve precise identification of multifunctional radar operational modes under limited sample conditions.Finally,compared to algorithms combining Generative Adversarial Networks with Meta-Learning and traditional Support Vector Machine classifiers,simulation results demonstrate that the proposed approach significantly enhances recognition accuracy by 2.39%and 17.42%,respectively.The ef-fectiveness of this method in accurately identifying multifunction radar operating modes under small sample conditions has been validated.

Multi-function radarPattern recognitionFew-ShotData AugmentationAttention Mecha-nismModel-Agnostic Meta-Learning

戴子瑜、普运伟、杜林、何志强

展开 >

昆明理工大学信息工程与自动化学院,昆明 650500

昆明理工大学计算中心,昆明 650500

多功能雷达 模式识别 小样本 数据增强 注意力机制 模型无关元学习

国家自然科学基金项目

61561028

2024

四川大学学报(自然科学版)
四川大学

四川大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.358
ISSN:0490-6756
年,卷(期):2024.61(5)