首页|面向滑坡监测预警的多参数耦合学习模型研究

面向滑坡监测预警的多参数耦合学习模型研究

扫码查看
对滑坡类型的地质灾害进行监测预警,是油气管道沿线地质灾害监测领域中的重要工作.然而传统监测预警大多根据经验设定阈值,缺少对监测数据的分析和提炼,容易造成阈值设定过高或过低的情况.为了解决此类问题,通过对监测数据的分析,基于高斯混合模型(Gaussian Mixture Model,缩写为GMM)构建了一种新的滑坡预警模型.首先,在数据异常值剔除、缺失值补齐的基础上,使用主成分(Principal Component Analysis,缩写为PCA)分析方法提取滑坡各监测数据变量特征,形成新维度的空间特征变量,其次使用GMM并结合变量特征构建了多参数耦合的滑坡预警模型,最后将该模型在滑坡监测真实数据上进行应用,从而实现对预警模型的验证.应用结果表明该模型能够提取滑坡监测数据的复合高级特征,实现对滑坡滑动的预警.
Researchon Multi Parameter Coupled Learning Model for Landslide Monitoring and Early-warning
Monitoring and early warning of landslide is an important work in the field of geological hazard monitoring along oil and gas pipelines.However,most of the methordsuesd in traditional monitoring and early warning are based on experience to set the threshold value,lacking the analysis and refinement of monitoring data,which is easy to cause the threshold setting too high or too low situation.In order to solve such problems,a new landslide warning model is constructed based on Gaussian Mixture Model(GMM)through the analysis of monitoring data.Firstly,on the basis of data outlier elimination and missing value complement,Principal Component Analysis(PCA)analysis method was used to extract variable features of landslide monitoring data and form spatial characteristic variables of new dimensions.Secondly,a multi-parameter coupled landslide warning model was constructed using GMM and combining variable features.Finally,the model is applied to the real data of landslide monitoring,so as to realize the verification of the early warning model.The application results show that the model can extract the composite advanced features of landslide monitoring data and realize the early warning of landslide.

landslideparameter couplingearly-warning modelprincipal component analysisGaussian mixture mode

周广、方迎潮、余东亮、席国仕、唐侨、吴森

展开 >

国家管网集团西南管道有限责任公司,成都 610041

四川省地质工程勘察院集团有限公司,成都 610072

滑坡 参数耦合 预警模型 主成分分析 高斯混合模型

2024

四川地质学报
四川省地质学会

四川地质学报

影响因子:0.314
ISSN:1006-0995
年,卷(期):2024.44(1)
  • 19