首页|基于YOLO轻量化网络的交通标志检测算法

基于YOLO轻量化网络的交通标志检测算法

扫码查看
近年来无人驾驶系统日益成为学者和企业研究的热门领域,而交通标志检测在无人驾驶中扮演着非常重要的角色,它将为无人驾驶系统提供决策支持,但现有的检测算法无法做到精准、快速地检测.为此,提出了Deep-Yolov4-tiny检测算法,它以Yolo轻量化网络Yolov4-tiny为基础,将多个卷积层添加到原网络中,改进CSP Block的网络结构;添加多个1×1卷积层,以降低网络的运算量;增大输入图像的尺度,以提升其对小目标的检测能力;使用K-means聚类算法优化anchor box的尺寸;对第二个Yolo层进行改进,使其充分利用经过K-means聚类后的anchor值,以更加全面地覆盖数据集中实际目标的大小,进一步提升了模型的检测准确率.实验结果表明,相较于Yolov4-tiny算法,Deep-Yolov4-tiny算法在中国交通标志数据集CCTSDB上,各个类别的平均精确度(mAP)提高了33.16%,且检测速度也能够满足实时性需求,更加有利于应用在嵌入式设备和移动设备等设备当中,对于提高行车安全和推动无人驾驶技术的发展有着一定的现实意义.
Traffic Sign Detection Algorithm Based on YOLO Lightweight Network

汤科元、刘川莉、蔡乐才、成奎、张宇杰、高祥

展开 >

四川轻化工大学自动化与信息工程学院,四川 宜宾 644002

宜宾学院三江人工智能与机器人研究院,四川 宜宾 644000

交通标志检测 Deep-Yolov4-tiny K-means 检测精确度

四川省科技厅重点研发项目宜宾市科技局项目

2019YFN01042016ZGY021

2021

四川轻化工大学学报(自然科学版)

四川轻化工大学学报(自然科学版)

ISSN:
年,卷(期):2021.34(5)
  • 6
  • 3