首页|基于个体记忆和高斯扰动的自适应灰狼算法

基于个体记忆和高斯扰动的自适应灰狼算法

扫码查看
针对传统灰狼算法在求解复杂优化问题时易陷入局部最优和收敛速度慢等问题,提出一种基于个体记忆和高斯扰动的自适应灰狼算法(NGWO).首先,引入一个非线性控制参数,以平衡算法中全局探索与局部开发能力.其次,为了加快算法的收敛速度和提高收敛精度,提出了一种拥有个体记忆的自适应位置更新公式.最后,通过结合贪心算法与自适应高斯扰动方法,增强了本算法跳出局部最优的能力.通过基准函数的测试,并与其他优化算法和改进算法进行对比,结果表明NGWO具有更精确的解和更高的收敛速度.
Adaptive Grey Wolf Optimization Algorithm Based on Individual Memory and Gaussian Perturbation
Aiming at the problems of local optimization and slow convergence speed of traditional gray wolf algorithms in solving complex optimization problems,an adaptive gray wolf optimization algorithm(NGWO)based on individual memory and Gaussian perturbation has been proposed.Firstly,a nonlinear control parameter is introduced to balance the global exploration and local development abilities of the algorithm.Secondly,an adaptive position update formula with individual memory is proposed,which is used to accelerate the convergence speed and accuracy of the algorithm.Then,the ability of the algorithm to jump out of local optimum is strengthened by combining greedy algorithm and adaptive Gaussian perturbation.Through the test of the benchmark function,NGWO has a more accurate solution and a higher convergence speed compared with other optimization algorithms and improved algorithms.

grey wolf optimizationnonlinear control parametersadaptiveGaussian perturbationindividual memory

陈朗、陈昌忠、刘鑫

展开 >

四川轻化工大学自动化与信息工程学院,四川 宜宾 644000

人工智能四川省重点实验室,四川 宜宾 644000

灰狼算法 非线性控制参数 自适应 高斯扰动 个体记忆

国家自然科学基金人工智能四川省重点实验室开放基金

619022682020RYJ05

2024

四川轻化工大学学报(自然科学版)
四川理工学院

四川轻化工大学学报(自然科学版)

影响因子:0.44
ISSN:2096-7543
年,卷(期):2024.37(2)
  • 23