首页|基于改进WGAN算法的融合神经网络入侵检测研究

基于改进WGAN算法的融合神经网络入侵检测研究

扫码查看
针对现有的入侵检测模型多关注样本整体检测率而忽视少样本攻击类别的问题,提出了一种改进的Wasserstein生成对抗网络(WGAN)算法,该算法能够对少样本攻击类别进行扩充以平衡正常样本和攻击样本,减少类不平衡对模型带来的干扰.首先,通过在判别器上引入正则项避免原始WGAN因权重裁剪参数选取不当导致模式崩溃.同时,为了提高生成质量,给生成器添加一个新的信息损失函数并且使用余弦相似度来衡量真实数据与生成数据的偏差.然后,使用融合神经网络模型来学习平衡数据集的高维特征.最后,将该方法应用于标准数据集UNSW-NB15上以检验性能.结果表明,同传统WGAN相比,精确度提升了3.01%,AUC提升了4.00%,准确率提升了5.46%;同单一分类模型相比,少样本类别Analysis、Backdoor、Worms、Shellcode上的F1分数分别提高了8.36%~13.20%、11.48%~13.28%、54.16%~58.63%、28.67%~42.85%.
Research on Fusion Neural Network Intrusion Detection Based on Improved WGAN Algorithm
Aiming at the problem that existing intrusion detection models pay more attention to the overall detection rate of samples and ignore the categories of few-sample attacks,an improved Wasserstein Generative Adversarial Network(WGAN)algorithm has been proposed,which can expand the categories of few-sample attacks to balance the normal samples and attack samples,reducing the interference caused by class imbalance to the model.Firstly,the model collapse of the original WGAN caused by improper selection of weight clipping parameters is avoided,by introducing regularization terms on the discriminator.At the same time,in order to improve the generation quality,a new information loss function is added to the generator and cosine similarity is used to measure the deviation between real data and generated data.Then,a fused neural network model is used to learn high-dimensional features of the balanced dataset.Finally,the method is applied on the standard data set UNSW-NB15 to verify its performance.The results show that compared with traditional WGAN,the precision of the improved WGAN increases by 3.01%,AUC increases by 4.00%,and accuracy increases by 5.46%;compared with a single classification model,the F1 scores on the few-sample categories Analysis,Backdoor,Worms,and Shellcode increases by 8.36%~13.20%,11.48%~13.28%,54.16%~58.63%,and 28.67%~42.85%,respectively.

intrusion detectionWasserstein Generative Adversarial Networkclass imbalancefusion neural network

李心、黄洪、袁国桃、王兆莲、杜瑞

展开 >

四川轻化工大学计算机科学与工程学院,四川 宜宾 644000

企业信息化与物联网测控技术四川省高校重点实验室,四川 宜宾 644000

入侵检测 wasserstein生成对抗网络 类不平衡 融合神经网络

2024

四川轻化工大学学报(自然科学版)
四川理工学院

四川轻化工大学学报(自然科学版)

影响因子:0.44
ISSN:2096-7543
年,卷(期):2024.37(6)