首页|弹性退休制度下谁更愿意延迟退休?——基于Option Value模型的微观模拟

弹性退休制度下谁更愿意延迟退休?——基于Option Value模型的微观模拟

扫码查看
人口老龄化背景下延迟退休年龄、建立弹性退休制度是大势所趋.养老金激励是弹性退休制度的重要内容.建立期权价值模型和养老金给付及奖惩因子模型,基于中国家庭收入调查项目(CHIP2018)的数据,对不同特征人群的养老金峰值、期权价值、内部报酬率进行模拟.研究发现:养老金总财富随退休年龄"先增后减",男性的峰值年龄早于女性;引入养老金"奖惩"机制有助于提高最优退休年龄,激励劳动者延迟退休;考虑闲暇偏好的异质性,男性参保者更倾向于早退休,而女性参保者特别是女性较高收入群体更愿意延迟退休;厌恶风险的参保者更有可能选择早退休.建议尽早建立弹性退休年龄政策体系,增加劳动者的选择权和制度灵活性;引入精算调节因子构建养老金奖惩机制,完善养老保险待遇计发办法.
Who Would Prefer to Delay Retirement under Flexible Retirement System?——Micro-simulation Based on Option Value Model
Under the background of population aging,it is a general trend to delay the retirement age and establish a flexible retirement system.Pension incentives are an important part of a flexible retirement system.This paper establishes an option value model and a pension benefit and reward-penalty factor model.Based on the data of the Chinese Household Income Project Survey(CHIP2018),we simulate the peak pension value,option value,and internal rate of return of different population characteristics.The results show that total pension wealth"first increases and then decreases"with the retirement age,and the peak age for males is earlier than that for females.Introducing a pension"reward and punishment"mechanism helps raise the optimal retirement age and encourage workers to delay retirement.Considering the heterogeneity of leisure preferences,male enrollees are more inclined to retire early,while female enrollees,especially those with higher incomes,are more willing to delay retirement.Risk-averse enrollees are more likely to retire early.It is suggested to establish a flexible retirement age policy system as soon as possible to increase workers'choices and institutional flexibility.Introduce actuarial adjustment factors to build pension reward and punishment mechanism,and improve the pension insurance benefit calculation and payment method.

Delayed RetirementPension WealthOption Value Model

郭秀云、李悦心

展开 >

华东政法大学 政府管理学院,社会保障研究中心,上海 201620

延迟退休 养老金财富 Option Value模型

教育部规划基金项目上海社科规划项目上海市高水平地方高校建设项目

23YTAZH0442019BGL006

2024

人口与发展
北京大学

人口与发展

CSSCICHSSCD北大核心
影响因子:1.626
ISSN:1674-1668
年,卷(期):2024.30(4)