四川中医2024,Vol.42Issue(9) :78-82.

基于EfficientNet的胃癌舌像变化分析研究

Analysis of Tongue Image Changes in Gastric Cancer Based on EfficientNet

周子力 胡文 邓巍 何绍亚
四川中医2024,Vol.42Issue(9) :78-82.

基于EfficientNet的胃癌舌像变化分析研究

Analysis of Tongue Image Changes in Gastric Cancer Based on EfficientNet

周子力 1胡文 1邓巍 1何绍亚1
扫码查看

作者信息

  • 1. 四川省第二中医医院消化内科,四川 成都 610031
  • 折叠

摘要

目的:通过结合EfficientNet模型研究胃癌舌像变化,分析舌色和苔色的类别,旨在使用便携式中医智能舌诊仪辅助医生做出更准确的诊断和治疗决策,经统计学技术分析不同舌色、苔色的量化指标.方法:采集 5000 例受试者舌像数据,对照组采用BP神经网络和卷积神经网络分别分类舌色和苔色.观察组结合EfficientNet模型辅助BP神经网络和卷积神经网络分别分类舌色和苔色,从而分析胃癌患者舌像的变化特征,并采用评价指标评价模型效果.结果:观察组模型研究胃癌舌像变化,精确率为 96.59%.测试集中识别苔色召回率、精确率、准确率分别为92.63%、92.62%、90.60%.识别舌色召回率、精确率、准确率分别为 89.61%、88.62%、88.45%.结论:Efficient-Net网络模型可以提高识别舌色和苔色变化的效率,这为提高临床医生诊疗决策效率提供了有力支持.

Abstract

Objective By combining the EfficientNet model to study the changes in tongue images of gastric cancer,analyzing the categories of tongue color and coating color,the aim is to use a portable traditional Chinese medicine intelligent tongue diag-nostic instrument to assist doctors in making more accurate diagnosis and treatment decisions.Statistical techniques are used to an-alyze quantitative indicators of different tongue and coating colors.Method Collect tongue image data from 5000 subjects,and use BP neural network and convolutional neural network to classify tongue color and coating color in the control group,respectively.The observation group combined EfficientNet model with BP neural network and convolutional neural network to classify tongue color and coating color respectively,in order to analyze the changes in tongue images of gastric cancer patients,and used evalua-tion indicators to evaluate the effectiveness of the model.Result The observation group model was used to study the changes in tongue images of gastric cancer,with an accuracy rate of 96.59%.The recall rate,accuracy rate,and accuracy rate of identif-ying moss color in the test set are 92.63%,92.62%,and 90.60%,respectively.The recall rate,accuracy rate,and accuracy rate of tongue color recognition are 89.61%,88.62%,and 88.45%,respectively.Conclusion The EfficientNet network model can improve the efficiency of identifying changes in tongue color and coating color,which provides strong support for improving the efficiency of clinical doctors in diagnosis and treatment decision-making.

关键词

胃癌/舌像变化/EfficientNet/舌色/苔色/精确率

Key words

Gastric cancer/Changes in tongue image/EfficientNet/Tongue color/Moss color/Accuracy

引用本文复制引用

基金项目

四川省科技计划重点研发项目(2023YFS0327)

出版年

2024
四川中医
四川省中医药学会,四川省中西医结合学会,四川省针灸学会,四川省中医药科学院

四川中医

CSTPCD
影响因子:0.522
ISSN:1000-3649
参考文献量8
段落导航相关论文