首页|基于机器学习的电力物资需求预测

基于机器学习的电力物资需求预测

扫码查看
准确、合理的电力物资需求预测,可以为物资采购打下良好的基础,为企业提前统筹资源创造有利条件.考虑历史需求数据、项目投资及施工进度,提出一种基于机器学习的需求预测模型.从外部因素、内部因素、历史数据3个方面全量梳理物资需求相关的影响因子,先采用引入时间序列算法对数据进行处理,再利用多元神经网络算法构建需求预测模型.以某公司10 kV电力电缆为例进行需求预测,结果表明该模型能有效预测短期物资需求.
Electric Power Material Demand Forecasting Based on Machine Learning
Accurate and reasonable demand forecasting of electric power material can lay a solid foundation for material procure-ment and create favorable conditions for enterprises to coordinate resources in advance.Considering historical demand data and project investment and construction progress,a demand forecasting model based on machine learning is proposed.By comprehen-sively reviewing the influencing factors related to material demand from external factors,internal factors and historical data,the time series algorithm is used to process the data,then a demand forecasting model is constructed through the multivariate neural network algorithm.Taking a company's 10 kV power cable as an example for demand forecasting,the results indicate that the mod-el can effectively predict short-term material demand.

material demand forecastingmultivariate neural networkinfluencing factorstime series

何培颖、唐昭媛、傅晓菲、陈涵、陈宇

展开 >

国网福州供电公司,福建 福州 350000

国网平潭供电公司,福建 平潭 350400

物资需求预测 多元神经网络 影响因子 时间序列

2024

山东电力高等专科学校学报
山东电力高等专科学校

山东电力高等专科学校学报

影响因子:0.284
ISSN:1008-3162
年,卷(期):2024.27(2)
  • 12