首页|基于MTL-SA-LSTM的多元负荷与光伏发电功率短期预测

基于MTL-SA-LSTM的多元负荷与光伏发电功率短期预测

扫码查看
在包含光伏发电的综合能源系统中,准确预测多元负荷与光伏发电功率对负荷需求响应计划制定、能源设备调度以及可再生能源消纳至关重要.为此提出一种新型短期预测模型,用于同时预测电负荷、冷负荷、热负荷以及光伏发电功率.该模型采用基于硬参数共享的多任务学习和长短时记忆网络架构,并加入自注意力机制以防止性能下降,模型预测结果与其他模型相比准确性明显提高.
Short-term Forecasting of Multivariate Loads and Photovoltaic Power Based on MTL-SA-LSTM
It is crucial to accurately predict the multivariate loads and photovoltaic power for the development of load demand re-sponse plan,energy equipment scheduling,and renewable energy consumption in an integrated energy system that includes photo-voltaic power generation.To this end,a novel short-term forecasting model is proposed for the simultaneous forecasting of elec-tric,cooling and thermal multivariate loads as well as photovoltaic power.The model adopts the multi-task learning and long short-term memory network architecture based on hard parameter sharing,with the self-attention mechanism incorporated to pre-vent performance degradation,thus giving significantly higher accuracy in prediction results compared with other models.

self-attention mechanismmulti-task learningmultivariate loadphotovoltaic powershort-term forecasting

张春霞

展开 >

济南工程职业技术学院,山东 济南 250200

自注意力机制 多任务学习 多元负荷 光伏发电功率 短期预测

2024

山东电力高等专科学校学报
山东电力高等专科学校

山东电力高等专科学校学报

影响因子:0.284
ISSN:1008-3162
年,卷(期):2024.27(6)