首页|基于混合偏移轴向自注意力机制的脑胶质瘤分割算法

基于混合偏移轴向自注意力机制的脑胶质瘤分割算法

扫码查看
为提高脑胶质瘤核磁共振成像(magnetic resonance imaging,MRI)图像分割精度及质量,设计一种混合偏移轴向自注意力机制的脑胶质瘤分割多层级轴向注意力网络(multi-level axial-attention net,MLA-Net)算法.MLA-Net算法框架中设计的混合偏移轴向自注意力机制和混和损失函数,分别用于提取更精确的全局相对位置关系、提升网络对细节结构特征的敏感程度和实现精确地分割胶质瘤模糊边界.试验结果表明,在BraTS 2018和2019的混合数据上,MLA-Net算法的dice系数可达到0.843 3,Hausdorff距离为2.587.MLA-Net算法的MRI图像脑胶质分割性能优良,可以融合全局相对位置特征和局部细节特征,更好地分割出脑胶质瘤感兴趣区域.
Glioma segmentation algorithm based on hybrid offset axial self-attention mechanism
To improve the accuracy and quality of glioma MRI image segmentation,this paper designed a hybrid offset axial self-attention mechanism for the glioma segmentation algorithm ML A-Net(Multi-level axial-attention net).The offset axial self-attention mechanism and hybrid loss function designed in this algorithmic framework could be used to extract more accurate global relative po-sition relationships,as well as to enhance the sensitivity of the net to detailed structural features and to achieve the role of accurately segmenting the fuzzy boundaries of gliomas,respectively.The experimental results showed that the dice coefficient of MLA-Net could reach 0.843 3 and the Hausdorff distance was 2.587 on the mixed data of BraTS 2018 and 2019.The MRI image glioma seg-mentation performance of MLA-Net was excellent,and could fuse the global relative position features and local detail features to bet-ter segment the lesion region.

brain gliomaimage segmentationMRIdeep learningaxial self-attention mechanism

高泽文、王建、魏本征

展开 >

山东中医药大学医学人工智能研究中心,山东青岛 266112

山东中医药大学青岛中医药科学院,山东青岛 266112

山东交通学院理学院,山东济南 250357

脑胶质瘤 图像分割 MRI 深度学习 轴向自注意机制

国家自然科学基金山东省自然科学基金山东省自然科学基金山东省自然科学基金山东省自然科学基金山东省高等学校青创引才育才计划

61872225ZR2019ZD04ZR2020KF013ZR2020ZD44ZR2020QF0432019-173

2024

山东大学学报(工学版)
山东大学

山东大学学报(工学版)

CSTPCD北大核心
影响因子:0.634
ISSN:1672-3961
年,卷(期):2024.54(2)
  • 38