首页|基于联邦学习的时间序列预测算法

基于联邦学习的时间序列预测算法

扫码查看
为应对不断升级的数据隐私保护需求,提出一种基于分布式场景下的时间序列预测算法.该算法主要改进体现在以下两个方面:在客户端模型本地训练阶段,通过正则化项约束本地模型训练方向,解决本地模型漂移问题;在全局模型聚合阶段,提出客户端贡献估计策略,根据客户端贡献程度分配权重,保护客户端协作公平性,提升全局模型泛化能力.为验证改进后算法有效性,在ETTh1 数据集、ETTm1 数据集和Weather数据集上将其与基线联邦学习算法FedAvg对比.试验结果表明,改进后算法在ETTh1 数据集上均方误差EMS平均降低2.99%,在ETTm1 数据集上EMS平均降低3.57%.在算法中加入正则化项和客户端贡献估计策略,EMS分别下降 0.84%和 2.78%,同时加入这两个模块,EMS降低 3.03%,验证提出的算法在预测性能方面表现出更高预测准确性.
Time series forecasting algorithm based on federated learning
To meet the constantly evolving demands for data privacy protection,a time series forecasting algorithm designed for distributed scenarios was proposed.The main improvements of the algorithm were as follows:during the local model training phase at client nodes,a regularization term was employed to constrain the training direction of local model,resolving the issue of local model drift;in the global model aggregation phase,a client contribution estimation strategy was proposed,which allocated weights based on the extent of client contributions to ensure fairness in client collaboration and enhance the generalizability of global model.To validate the effectiveness of improved algorithm,it was compared with the baseline federated learning algorithm FedAvg on ETTh1,ETTm1,and Weather datasets.Experimental results showed that the improved algorithm reduced the mean square error EMS by 2.99%on ETTh1 dataset and 3.57%on ETTm1 dataset.Incorporating the regularization term and client contribution estimation strategy into the algorithm led to respective decreases of 0.84%and 2.78%in EMS,and a combined decrease of 3.03%in EMS,confirming that the proposed algorithm showed higher predictive accuracy.

federated learningmachine learningtime series forecastingdistributed systemsdeep learning

刘新、刘冬兰、付婷、王勇、常英贤、姚洪磊、罗昕、王睿、张昊

展开 >

国网山东省电力公司电力科学研究院,山东 济南 250003

山东省智能电网技术创新中心,山东 济南 250003

山东大学软件学院,山东 济南 250101

国网山东省电力公司,山东 济南 250001

展开 >

联邦学习 机器学习 时间序列预测 分布式系统 深度学习

国家电网山东省电力公司科技资助项目

520626220018

2024

山东大学学报(工学版)
山东大学

山东大学学报(工学版)

CSTPCD北大核心
影响因子:0.634
ISSN:1672-3961
年,卷(期):2024.54(3)