首页|基于改进多目标粒子群算法的储气库注气优化

基于改进多目标粒子群算法的储气库注气优化

扫码查看
为减少储气库不合理注气导致的微震次数,保证储气库注气量最大,构建基于双向长短期记忆(bi-directional long short-term memory,BiLSTM)神经网络预测代理模型,降低微震次数和储气库有效应力的预测误差,提出一种精英进化多目标粒子群优化(elite-evolved multi-objective particle swarm optimizer,EMPSO)算法.采用基于排序分组策略对种群进行分组,并在每个分组内进行随机精英竞争学习,提高算法的多样性;引入精英聚集的思想,加快算法的收敛速度.基于BiLSTM模型和EMPSO算法对储气库注气过程进行优化,与其他 3 种多目标优化算法进行对比,将EMPSO算法应用于实际配产优化.结果表明,改进后的算法具有更好的Pareto前沿、更快的收敛速度,优化后微震次数和有效应力分别降低了 9.78%和10.12%,对保障储气库安全和提高储气库储气量具有重要意义.
Optimization of gas storage based on improved multi-objective particle swarm optimization algorithm
In order to reduce the number of microseisms caused by unreasonable gas injection in the gas storage and ensure the maximum gas injection in the gas storage,a surrogate model based on bi-directional long short-term memory(BiLSTM)neural network was constructed to predict the number of microseisms and the effective stress in the gas storage,and the prediction error was within 5%.An elite evolutionary multi-objective particle swarm optimization(EMPSO)algorithm was proposed,which used sorting grouping strategy to group the population.Random elite competition learning was conducted within each group to improve the diversity of the algorithm,while introducing the idea of elite aggregation to accelerate the convergence speed of the algorithm.Based on the BiLSTM model and EMPSO algorithm,the gas injection process of gas storage was optimized,and compared with three other multi-objective optimization algorithms.The EMPSO algorithm was applied to actual production optimization.The results showed that the improved algorithm had better Pareto front and faster convergence speed.After optimization,the number of microseisms and effective stress were reduced by 9.78%and 10.12%,respectively.It was of great significance to ensure the safety of gas storage and improve the storage capacity of gas storage.

underground gas storagesurrogate modelbi-directional long and short-term memoryimproved particle swarm algorithmmulti-objective optimisation search

杜睿山、井远光、孟令东、张豪鹏

展开 >

东北石油大学计算机与信息技术学院,黑龙江 大庆 163318

油气藏及地下储库完整性评价黑龙江省重点实验室(东北石油大学),黑龙江 大庆 163318

地下储气库 代理模型 双向长短期记忆 改进的粒子群算法 多目标寻优

黑龙江省自然科学基金资助项目

LH2021F004

2024

山东大学学报(工学版)
山东大学

山东大学学报(工学版)

CSTPCD北大核心
影响因子:0.634
ISSN:1672-3961
年,卷(期):2024.54(4)