首页|改进Faster R-CNN的交通标志检测算法

改进Faster R-CNN的交通标志检测算法

扫码查看
针对目前交通标志检测方法受光照影响较大,模型精度低等问题,提出一种更快基于区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN)的交通标志检测算法.针对图像中天空与非天空区域的光照不均匀现象,引入伽马变换增强交通标志在模型中的特征表达能力;利用基于卷积注意力模块的高效网络(convolutional block attention module-based an efficient network,CBAM-EfficientNet)解决网络深度退化问题,提高浅层网络的特征获取能力,降低参数量;在网络中引入特征金字塔网络以检测不同尺寸目标,增强网络对不同尺寸交通标志的感知能力,解决交通标志尺寸差异问题.试验结果表明,该算法在GTSDB数据集上的平均准确率均值PmA达到 99.79%,在CCTSDB2021 数据集上的PmA达到87.62%.为光照不均匀图像的交通标志检测提供一种高准确性的方法.
Traffic sign detection algorithm of improving Faster R-CNN
To address the current limitations of illumination effects and low accuracy of model,a faster region-based convolutional neural network(Faster R-CNN)traffic sign detection algorithm was proposed.It addressed uneven illumination between sky and non-sky areas using Gamma transformation to improve the feature representation of traffic signs.The use of the convolutional block attention module-based an efficient network(CBAM-EfficientNet)counteracted network depth degradation,improved shallow network feature extraction and reduced parameters.The introduction of a feature pyramid network facilitated the detection of different-sized objects,enhanced the network's ability to perceive traffic signs of different sizes.Experimental results demonstrated high accuracy,with an PmA of 99.79%on the GTSDB dataset and 87.62%on the CCTSDB2021 dataset,provided a highly accurate solution for the detection of unevenly illuminated traffic signs.

traffic sign detectionFaster R-CNNimage enhancementfeature pyramid networkCBAM-EfficientNet

薛健、赵琳、张浩、杨璐、郝凡昌

展开 >

山东建筑大学计算机科学与技术学院,山东 济南 250101

交通标志检测 Faster R-CNN 图像增强 特征金字塔网络 CBAM-EfficientNet

山东省自然科学基金面上资助项目山东省高等学校青年创新团队资助项目山东省重点研发计划资助项目

ZR2022MF2722022KJ2052019GGX101068

2024

山东大学学报(工学版)
山东大学

山东大学学报(工学版)

CSTPCD北大核心
影响因子:0.634
ISSN:1672-3961
年,卷(期):2024.54(5)