首页|自适应的并行天牛须优化算法

自适应的并行天牛须优化算法

扫码查看
为提高天牛须搜索算法(beetle antennae search algorithm,BAS)寻优能力,提出一种自适应的并行天牛须优化算法(adaptive and parallel beetle antennae optimization algorithm,APBAO),该算法将BAS中的单只迭代体进化为并行的多只迭代体,尽可能扩大解空间的搜索范围;提出精英天牛的概念实现算法自适应,提高算法精度.为验证算法的性能,采用多个标准测试函数进行测试,将 APBAO 与 BAS、粒子群优化算法(particle swarm optimization,PSO)和蚁群优化算法(ant colony optimization,ACO)的性能进行比较.试验结果表明,与BAS相比,APBAO对目标函数的优化率提高了97.39%,与PSO和ACO相比分别提高了84.46%和86.98%.所提出方法可以有效避免目标函数陷入局部最小值,拥有更好的性能和更强的寻优能力.
A daptive and parallel beetle antennae optimization algorithm
To enhance optimization capabilities of beetle antennae search algorithm(BAS),self-adaptive and parallel beetle antennae optimization algorithm(APBAO)was proposed.APBAO evolved from a single iterative individual in BAS to multiple parallel iterative individuals which expanded the search scope of solution space.Elite system was employed to make algorithm self-adaptive.To verify the performance of the algorithm,test was conducted using multiple standard benchmark functions,compared APBAO with BAS,particle swarm optimization algorithm(PSO)and ant colony optimization algorithm(ACO).The experimental results showed that APBAO's optimization rate for the objective function was increased by 97.39%compared to BAS,and by 84.46%and 86.98%compared to the PSO and ACO,respectively.The proposed improvements effectively enhanced algorithm performance,and helped the algorithm escape from local optimal.

beetle antennae search algorithmevolutionary computationparallel computingadaptivestep size

王辰龑、刘轩、超木日力格

展开 >

民族语言智能分析与安全治理教育部重点实验室,北京 100081

中央民族大学信息工程学院,北京 100081

天牛须优化算法 演化计算 并行计算 自适应 步长

北京市科技计划资助项目

Z231100001723002

2024

山东大学学报(工学版)
山东大学

山东大学学报(工学版)

CSTPCD北大核心
影响因子:0.634
ISSN:1672-3961
年,卷(期):2024.54(5)