首页|基于双解码器的医学图像分割模型

基于双解码器的医学图像分割模型

扫码查看
针对医学图像目标区域尺度不一及有标签医学图像样本少的问题,提出一种基于双解码器的医学图像分割模型(dual-decoding Swin-Unet,DDS-UNet).DDS-UNet模型以Swin Transformer模块构建编码器,提取医学图像多尺度特征;解码器 1利用Swin Transformer模块全局和远程语义特征提取优势,在上采样过程中逐级恢复并聚合编码器输出的对应尺度特征信息;解码器 2 利用卷积神经网络(convolutional neural networks,CNN)的局部特征提取优势,在上采样过程中逐级恢复医学图像空间信息;特征融合模块利用空洞卷积分解编码器输出的深层语义特征信息,并在上采样过程中协同融合双解码器输出的多尺度特征信息,重建医学图像目标区域的空间细节信息.脊柱和脑胶质瘤图像分割试验结果表明,DDS-UNet模型对目标区域具有优异的特征提取和分割能力.消融试验进一步验证DDS-UNet模型对医学图像分割的有效性.
Medical image segmentation model based on double decoder
Since the target area scales of medical images were different,and samples of labeled medical images were few,a dual decoder medical image segmentation model DDS-UNet was proposed.To be more specific,the DDS-UNet model used Swin Transformer module to construct the encoder,to extract multi-scale features of medical images.The decoder 1 took advantage of Swin Transformer module for global and remote semantic feature extraction to recover and aggregate the corresponding scale feature information of the encoder output step by step during the upsampling process.The decoder 2 made use of the local feature extraction advantage of convolutional neural networks(CNN)to recover the spatial information of medical images step by step during the upsampling process.The feature fusion module used the cavity convolution to decompose the deep semantic feature information output by the encoder,and collaboratively fused the multi-scale feature information output by the double decoders in the upsampling process,so as to reconstruct the spatial details of the target region of the medical image.The experimental results of spine and brain glioma image segmentation showed that the DDS-UNet model had significant abilities on feature extraction and segmentation for the target region.The ablation experiment further verified the effectiveness of the DDS-UNet model for medical image segmentation.

medical image segmentationdouble decoderSwin Transformeratrous convolutionmulti-scale feature fusion

刘全金、嵇文、胡浪涛、黄汇磊、杨瑞、李翔、高泽文、魏本征

展开 >

安庆师范大学电子工程与智能制造学院,安徽 安庆 246133

山东中医药大学医学人工智能研究中心,山东 青岛 266112

山东中医药大学青岛中医药科学院,山东 青岛 266112

医学图像分割 双解码器 Swin Transformer 空洞卷积 多尺度特征融合

2024

山东大学学报(工学版)
山东大学

山东大学学报(工学版)

CSTPCD北大核心
影响因子:0.634
ISSN:1672-3961
年,卷(期):2024.54(6)