首页|基于图像数据和碎石集料级配与用量的碎石集料空隙率快速检测方法

基于图像数据和碎石集料级配与用量的碎石集料空隙率快速检测方法

扫码查看
为解决传统碎石集料检测方法中存在的破坏性检测、代表性不足、人工操作误差、费时费力及检测不连续等问题,提出一种连续、无损、快速且准确的碎石集料空隙率检测新方法.使用摄像设备采集振实后的碎石集料表面图像,并利用图像处理技术提取碎石集料的表面图像数据;分析提取到的图像信息,建立体现碎石集料表面特征的图像指标体系;使用提取到的图像指标、集料用量和级配信息作为输入数据,采用随机森林方法对碎石集料的空隙率进行预测;设计室内压实模拟试验方案,收集 65 组不同用量和级配的碎石集料空隙率测定结果,构建用于机器学习模型训练的数据集.结果显示,所提议方法在测试集上的平均绝对百分比误差为 1.69%、平均绝对值误差为 0.589、均方根误差为 0.914、相关指数为 0.974、预测精度达到98.31%,可实现连续、无损、快速、准确的碎石集料空隙率实时检测.
Rapid detection of crushed stone aggregate void fraction based on image data and crushed stone aggregate grading and amounts
To address the challenges associated with traditional methods for detecting void ratio in crushed aggregates,such as destructive testing,lack of representativity,manual operation errors,time consumption and discontinuity,this study proposed a novel method for continuous,non-destructive,rapid,and accurate detection of void ratio in crushed aggregates.Imaging equipment was employed to capture surface images of compacted crushed aggregates,and image processing techniques were utilized to extract surface image data of the aggregates.The extracted image information was analyzed to establish an image index system that reflected the surface characteristics of the crushed aggregates.The extracted image indices,along with aggregate quantity and gradation information,were used as input data for predicting the void ratio of the crushed aggregates using a Random Forest model.An indoor compaction simulation test scheme was designed,and 65 sets of void ratio measurements of crushed aggregates with varying quantities and gradations were collected to construct a dataset for training the machine learning model.The results showed that the proposed method achieved an average absolute percentage error of 1.69%,an average absolute error of 0.589,a root mean square error of 0.914,and a correlation coefficient of 0.974 on the test set,with a prediction accuracy of 98.31%.This method enabled continuous,non-destructive,rapid,and accurate real-time detection of void ratio in crushed aggregates.

image processingrandom forestgravel aggregate void ratioconstruction quality controlnon-destructive testing

鲁志恒、霍延强、韩汶、杜聪、刘轶鹏、张宏博

展开 >

山东省交通科学研究院,山东 济南 250102

山东大学齐鲁交通学院,山东 济南 250002

图像处理 随机森林 碎石集料空隙率 施工质量控制 无损检测

2024

山东大学学报(工学版)
山东大学

山东大学学报(工学版)

CSTPCD北大核心
影响因子:0.634
ISSN:1672-3961
年,卷(期):2024.54(6)