首页|考虑时空聚类的变电站雷电预警模型

考虑时空聚类的变电站雷电预警模型

扫码查看
变电站有效防雷是电网稳定性的重要环节.本文基于单一的雷电探测数据,将其划分为连续时段的雷击点集,通过DBSCAN聚类算法得到各个时段相对集中的雷击点集,对于连续两个时段聚类成功的雷击点集,计算雷云的移动方向和速度,以预测未来的雷击区域,当预测雷击区域覆盖变电站时,则对工作人员提前告警.仿真结果表明,本文的预警模型效果较好,预测时间提前量可达十几分钟,时间提前量在10 分钟内时,几乎达到精准预测.区别于当前常用的硬件防雷设施,本文的预警模型可在雷电发生前进行雷电告警,以便工作人员提前采取应急措施.
Substation Lightning Early Warning Model Considering Spatiotemporal Clustering
Effective lightning protection of substation is an important part of power grid stability.Based on single lightning detection data,this paper divides it into lightning strike point sets of continuous periods,and obtains relatively concentrated lightning strike point sets in each period through the DBSCAN clustering algorithm.For the lightning strike point sets successfully clustered in two consecutive periods,calculate the moving direction and speed of the thundercloud in order to predict the future lightning strike area.When the predicted lightning strike area covers the substation,the staff will be warned in advance.The simulation results show that the early warning model in this paper works well,and the prediction time advance can reach more than ten minutes.When the time advance is within 10 minutes,it can almost achieve accurate prediction.Different from the current commonly used hardware lightning protection facilities,the early warning model in this paper can provide lightning warnings before lightning occurs,so that the staff can take emergency measures in advance.

substationspatiotemporal clusteringDBSCAN clustering algorithmlightning warning

陈华

展开 >

国网江苏省电力有限公司张家港市供电分公司,江苏 张家港 215600

变电站 时空聚类 DBSCAN聚类算法 雷电预警

2024

山东工业技术

山东工业技术

ISSN:
年,卷(期):2024.(1)
  • 11