首页|一种基于特征增强的三维人体姿态估计算法

一种基于特征增强的三维人体姿态估计算法

扫码查看
针对目前基于混合方法的三维人体姿态估计网络,在面对遮挡、小目标等影响出现估计结果错误的问题,提出一种基于特征增强的三维人体姿态估计算法.该网络在支路使用多通道多尺度的金字塔特征捕捉模块改善特征提取能力,并使用图注意力模块对提取特征进行精细化处理.经过以上两步方法增强特征,可以改善三条支路特征精细化程度,改善姿态估计过程中估计不准确的问题.经过多个数据集训练并在 3DPW数据集上测试,结果证明与现存先进网络ROMP相比,MPJPE和PA-MPJPE分别降低 1.9%和3.1%,对降低三维人体姿态估计过程误差有良好效果.
A 3D Human Pose Estimation Algorithm Based on Feature Enhancement
Aiming at the problem that the estimation results of 3D human pose estimation networks based on hybrid methods are wrong in the face of occlusion and small targets,a 3D human pose estimation algorithm based on feature enhancement is proposed.In this network,multi-channel and multi-scale pyramid feature capture module is used to improve the feature extraction capability,and the graph attention module is used to refine the extracted features.Through the above two-step method,the feature refinement of the three branches can be improved,and the problem of inaccurate estimation in the attitude estimation process can be improved.After training on multiple datasets and testing on 3DPW datasets,the results show that compared with the existing advanced network ROMP,MPJPE and PA-MPJPE reduce the error of 3D human pose estimation process by 1.9%and 3.1%respectively.

pose estimationfeature extractionpyramidgraph attention

汪洋继鸿、王健、张路、于越

展开 >

大连民族大学机电工程学院,辽宁 大连 116605

北方民族大学电气信息工程学院,宁夏 银川 750021

姿态估计 特征提取 金字塔 图注意力

2024

山东工业技术

山东工业技术

ISSN:
年,卷(期):2024.(2)