首页|基于双流外观运动语义融合的视频异常行为检测架构

基于双流外观运动语义融合的视频异常行为检测架构

扫码查看
视频异常行为检测目的在于检测出稀少且随机的异常事件,这些异常事件通常偏离预期.现有的检测方法没有将事件的外观语义和运动语义进行结合考量,所以导致检测效果不佳.由于正常事件的外观语义和运动语义高度一致且对应,而异常事件的语义一致性较低.本文基于此,提出一种双流融合的混合网络进行异常行为检测.利用多尺度融合的自编码器分别记录事件的外观语义和运动语义,生成对应的重建外观帧和重建运动帧.之后将两帧进行融合生成最后的预测帧.本文通过引入时间注意力来增强模型表示运动语义的能力并捕捉正常行为的有效规则运动.在三个标准公开数据集的实验表明,本文提出的方法可以准确检测异常事件,其性能可与最先进的方法相媲美.
TSF-Net:Abnormal Video Behavior Detection Framework Based on Two-Stream Appearance Motion Semantic Fusion
Video anomalous behavior detection aims to detect rare and random anomalous events,which usually deviate from expectations.Existing detection methods do not consider the appearance semantics and motion semantics of the events in conjunction,so they lead to poor detection results.Since the appearance semantics and motion semantics of normal events are highly consistent and correspond,while the semantic consistency of abnormal events is low.Based on this,this paper proposes a two-stream fusion hybrid network for abnormal behavior detection.The appearance semantics and motion semantics of events are recorded separately using a multi-scale fused self-encoder to generate corresponding reconstructed appearance frames and reconstructed motion frames.Afterwards,the two frames are fused to generate the final prediction frame.We introduce temporal attention to enhance the model's ability to represent motion semantics and capture normal behavior with effective regular motion.Experiments on three standard public datasets show that the method proposed in this paper can accurately detect anomalous events with a performance comparable to state-of-the-art methods.

video anomaly detectionTwo-Stream netprediction-based detection

李博男、曹瑞、张宏

展开 >

中国广电山东网络有限公司,山东 济南 250000

齐鲁工业大学(山东省科学院)计算机科学与技术学部,山东 济南 250000

视频异常检测 双流网络 基于预测的检测

2024

山东工业技术

山东工业技术

ISSN:
年,卷(期):2024.(3)
  • 28