首页|基于神经网络燃机进气系统滤网压差预测模型研究

基于神经网络燃机进气系统滤网压差预测模型研究

扫码查看
针对由于风速、风向、温度、湿度、降雨、降雪、沙尘、生物聚集等运行工况恶劣而造成的燃气轮机进气过滤器失效的问题,提出一种基于人工智能的燃气轮机进气系统压差的预测研究,建立了压差预测的神经网络模型.结果表明,该方法预测精度较高,可用于滤网压差的预测.通过对燃气轮机滤网差压进行综合预测与评估,当燃机进气滤网压差突变时,提前做好准备,及时更换滤网或进行滤网反吹,提高了燃气轮机发电机组的经济性、安全性和稳定性.
Research on Prediction Model of Pressure Difference of Gas Engine Intake System Filter Based on Neural Network
In this paper,a prediction study of pressure difference in gas turbine intake system based on artificial intelligence is presented,and a neural network model for pressure difference prediction is established,in order to solve the problem of gas turbine intake filter failure which caused by poor operating conditions such as wind speed,wind direction,temperature,humidity,rainfall,snowfall,dust,and biological accumulation and so on.The differential pressure of gas turbine filters is comprehensively predicted and evaluated to achieve accurate prediction of differential pressure data and real-time monitoring of factors affecting the deterioration of differential pressure.thereby make preparations in advance,when the pressure difference of the gas turbine intake filter changes abruptly,replace the filter screen in time or reverse blow the filter screen,so as to comprehensively remove the fault.Improving the economy,safety and stability of gas turbine generating units.

gas turbinedifferential pressurepredictionneural network

张宁

展开 >

中国大唐集团科学技术研究总院有限公司华东电力试验研究院,安徽 合肥 230031

燃气轮机 压差 预测 神经网络 经济性

2024

山东工业技术

山东工业技术

ISSN:
年,卷(期):2024.(4)