首页|工厂仪表检测与识别研究现状

工厂仪表检测与识别研究现状

扫码查看
本文分析了当前仪表检测和识别的关键方法和技术,主要包括仪表表盘图像的获取方式及设备、表盘图像处理方法和表盘数据提取算法。仪表表盘图像的获取方式除了人工巡检外,还有足式、轮式、轨道式巡检机器人搭载摄像头检测等传感器进行自主巡检。表盘图像处理是为了修正各种干扰,如表盘倾斜、环境光线过暗、曝光或背光、图像模糊和图像遮挡等,以便获得更完整、更准确的仪表图像。表盘数据提取目前有常规的图像处理法和基于神经网络的深度学习法。常规图像处理方法通过特征提取和模式匹配,获取仪表指针数值和刻度盘读数。深度学习方法如卷积神经网络和循环神经网络有助于更准确和高效地对仪表关键特征进行识别。未来发展方向更倾向于基于深度学习模型和优化算法,进一步提升仪表检测的准确性和效率、提高仪表数据处理和分析能力,实现对仪表数据的快速读取从而实现更高精准的检测与识别。
Research Status of Factory Instrument Detection and Identification
This manuscript analyzes the key methods and technologies of current instrument detection and identification,mainly including the acquisition method and equipment of instrument dial images,dial image processing method and dial data extraction algorithm.In addition to manual inspection,the acquisition method of instrument dial images also includes foot-type,wheel-type,and track-type inspection robots equipped with sensors such as camera detection for autonomous inspection.The purpose of dial image processing is to correct various interferences,such as dial tilt,too dark ambient light,exposure or backlight,image blur and image occlusion,so as to obtain a more complete and more accurate instrument image.There are currently conventional image processing methods and deep learning methods based on neural networks for dial data extraction.Conventional image processing methods obtain instrument pointer values and dial readings through feature extraction and pattern matching.Deep learning methods such as convolutional neural networks and recurrent neural networks help to identify key features of instruments more accurately and efficiently.The future development direction is more inclined to be based on deep learning models and optimization algorithms to further improve the accuracy and efficiency of instrument detection,improve instrument data processing and analysis capabilities,and achieve rapid reading of instrument data to achieve more accurate detection and identification.

instrument detection and identificationdeep learningimage processingnumerical extraction

王德帅、王新佩、武涛、刘泽皓、邵海燕

展开 >

济南大学机械工程学院,山东 济南 250022

山东省五金与衡器行业协会,山东 济南 250102

济南汇邦自控仪表有限公司,山东 济南 250024

控制阀技术研究所,山东 济南 250022

展开 >

仪表检测与识别 深度学习 图像处理 数值提取

2024

山东工业技术

山东工业技术

ISSN:
年,卷(期):2024.(6)