首页|经验模态分解-图神经网络算法预测农产品价格

经验模态分解-图神经网络算法预测农产品价格

扫码查看
为了提高图神经网络算法对农产品价格预测精度,采用经验模态分解法按时间片轮转抽取农产品历史价格信号,以便对历史价格信号进行特征提取;将原始价格信号分解成多个本征模态函数及残余项,并根据本征模态函数构建样本特征;根据得到的样本特征构建价格预测图结构,将图结构输出的特征信号通过图神经网络的过渡函数和预测函数,通过不断减小损失值输出农产品价格预测结果.结果表明,经验模态分解可以对原始农产品价格信号的本征模态函数分量进行有效分解和提取,从而使经验模态分解-图神经网络算法的农产品价格预测平均绝对误差减小 71.4%;相比于其他类型的预测算法,经验模态分解-图神经网络算法对 4 类农产品价格预测的平均绝对误差更小,最大值仅为 2.465.
Agricultural Product Price Prediction Based on Empirical Mode Decomposition and Graph Neural Network Algorithm
To improve the accuracy of agricultural product price prediced by using graph neural network(GNN)algo-rithm,empirical mode decomposition(EMD)method was used to extract the historical price signals of agricultural pro-ducts in turn according to time slices,so as to extract the characteristics of the historical price signals.The original price signal was decomposed into several instrinsic mode functions and residual terms,and the sample characteristics were con-structed according to the instrinsic mode functions.According to the obtained sample characteristics,the graph structure was constructed,and the characteristic signals output from the graph structure pass through the transition function and prediction function of GNN algorithm,and the agricultural product price prediction results were output by continuously reducing the loss value.The results show that EMD can effectively decompose and extract the intrinsic mode function components of the original agricultural product price signals,thus the average absolute error of agricultural product price predicted by using EMD-GNN algorithm is reduced by 71.4%.Compared with other types of forecasting algorithms,the average absolute error of EMD-GNN algorithm for the price prediction of 4 types of agriculture products is smaller,and the maximum value is only 2.465.

price prediction of agricultural productsgraph neural networkempirical mode decompositionintrinsic mode function

赖玉莲、马琳娟、张延林

展开 >

广州理工学院 工商管理学院,广东 广州 510540

北京理工大学 计算机学院,北京 100081

广东工业大学 管理学院,广东 广州 510006

农产品价格预测 图神经网络 经验模态分解 本征模态函数

国家自然科学基金项目

72272039

2024

济南大学学报(自然科学版)
济南大学

济南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.441
ISSN:1671-3559
年,卷(期):2024.38(3)
  • 8