首页|基于Spark平台的并行化谱聚类算法的在线学习资源推荐

基于Spark平台的并行化谱聚类算法的在线学习资源推荐

扫码查看
为了提高在线学习资源推荐的准确度,采用谱聚类用于学习资源的归类,将类别相似度高的资源推荐给用户,提出Spark平台的并行化谱聚类算法,提高资源推荐效率;首先提取在线学习资源及用户特征并初始化,建立谱聚类模型,在Spark平台上分别求解无向图的顶点相似度及归一化拉普拉斯系数;然后采用归一化分割划分子集,通过归一化割集优化方式求解类别特征,并对类别特征按行输出特征点;最后采用k均值算法对特征点进行聚类,获得聚类结果.结果表明,采用谱聚类算法并借助于Spark平台的计算优势,所提推荐方法比常用的在线学习资源推荐算法的准确率和覆盖率更高,在海量学习资源的实时推荐方面具有较高适应度.
Online Learning Resource Recommendation by Using Parallel Spectral Clustering Algorithm Based on Spark Platform
To improve the accuracy of online learning resource recommendation,spectral clustering was used to classify learning resources,recommend resources with high category similarity to users,a parallel spectral clustering algorithm based on Spark platform was proposed to enhance the efficiency of resource recommendation.First,the online learning resources and user features were extracted and initialized,then a spectral clustering model was established,and the vertex similarity matrix and normalized Laplacian matrix of the undirected graph on Spark platform were solved.Then the normalized segmentation for subset division was used,the class vector was solved by the normalized cut set optimization method,and the feature points of the class vector by line was output.Finally,k-means algorithm was used to cluster the feature points and obtain the clustering results.The experimental results show that compared with the common online learning resource recommendation algorithms,the spectral clustering algorithm based on Spark platform has higher recom-mendation accuracy and coverage,and has higher adaptability in real-time recommendation of massive learning resources.

online learningresource recommendationspectral clusteringSpark platformfigure segmentation

刘莹、杨淑萍、张治国

展开 >

辽宁师范大学 教育学院,辽宁 大连 116000

河海大学 机电工程学院,江苏 南京 211100

在线学习 资源推荐 谱聚类 Spark平台 图分割

国家自然科学基金项目国家社会科学基金项目

62176142BJA190094

2024

济南大学学报(自然科学版)
济南大学

济南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.441
ISSN:1671-3559
年,卷(期):2024.38(4)