首页|CatBoost算法结合Optuna框架预测砂土液化

CatBoost算法结合Optuna框架预测砂土液化

扫码查看
为了解决利用机器学习算法建立的部分砂土液化预测模型仅在特定地区实现高精确预测而泛化能力减弱的问题,从而扩大砂土液化预测模型适用范围,准确预测砂土液化,以更好地防治地震灾害,基于类别型特征提升算法CatBoost并结合自动超参数优化框架Optuna进行调参训练,建立CatBoost-Optuna砂土液化预测模型;将标准贯入试验的地震液化数据集划分为训练集和测试集,利用5个评估指标评估所建立模型的预测结果,与测试集中多层感知机和支持向量机砂土液化预测模型的评估结果相比较,并以地震液化案例数据作为验证集,对比不同预测模型的预测效果.结果表明:与多层感知机和支持向量机砂土液化预测模型相比,所建立的模型在测试集中评估指标较大,有更好的预测效果;在验证集中,所建立模型的评估指标只有精准率略微减小,其他评估指标都保持稳定,而对比模型的评估指标只有召回率保持稳定,其他评估指标都有所减小,只有所建立模型的预测效果与在测试集中的预测效果保持一致,进一步证明所建立模型的泛化能力较强.
Sand Liquefaction Prediction by Using CatBoost Algorithm Combined with Optuna Framework
To solve the problem that some sand liquefaction prediction models built by using machine learning algorithms only achieved high accuracy in specific areas and had weak generalization ability,so as to expand applicability of the sand liquefaction prediction models and accurately predict sand liquefaction for better prevention and control of seismic hazards,a CatBoost-Optuna sand liquefaction prediction model was established on the basis of categorical feature boosting algorithm CatBoost combined with automatic hyper parameter optimization framework Optuna for parameter adjustment training.The seismic liquefaction dataset from the standard penetration test was divided into a training set and a test set,and prediction results of the established model were evaluated using five evaluation indexes.Evaluated results of multilayer perceptron and support vector machine sand liquefaction prediction models in the test set were compared,and the seismic liquefaction case data was used as a validation set to compare prediction effects of different prediction models.The results show that compared with multilayer perceptron and support vector machine sand liquefaction prediction models,the estab-lished model has larger evaluation indexes and better prediction effects in the test set.In the validation set,only pre-cision rate among evaluation indexes of the established model slightly decreases,and other evaluation indexes remain stable,while only recall rate among evaluation indexes of the comparison models remains stable,and other evaluation indexes decrease.Only prediction effects of the established model remain consistent with those in the test set,which further demonstrates superior generalization ability of the established model.

geotechnical engineeringsand liquefaction predicationmachine learningCatBoost algorithmOptuna frameworkgeneralization ability

何家智、冯现大、刘天琦

展开 >

济南大学 土木建筑学院,山东 济南 250022

岩土工程 砂土液化预测 机器学习 CatBoost算法 Optuna框架 泛化能力

国家自然科学基金项目山东省自然科学基金项目

51809115ZR2019QEE003

2024

济南大学学报(自然科学版)
济南大学

济南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.441
ISSN:1671-3559
年,卷(期):2024.38(4)