首页|主体-行为-客体语义分析构建技术功效矩阵

主体-行为-客体语义分析构建技术功效矩阵

扫码查看
针对准确定义技术、功效主题的关键问题,通过分析技术、功效主题在构建技术功效矩阵中的语义共现性,提出一种基于主体-行为-客体语义分析的技术功效矩阵构建方法;基于目标领域制定检索表达式,在国家知识产权局专利数据库中下载相关专利信息数据,并预处理专利数据,得到目标专利信息文档;利用Python语言编程,采用中文分词工具包语言技术平台提取专利信息文档的主体-行为-客体语义结构,结合目标领域语料库、词频-逆文本频率和余弦相似度计算主题词的语义相似度;利用聚类算法Louvain算法实现社区网络划分,以凝练技术、功效主题,并通过主体-行为-客体语义结构的共现关系构建技术功效矩阵;以海底电缆反应力锥切削技术为例,通过专利实例分析验证所提出方法的有效性.结果表明:在分析大量专利实例以构建技术功效矩阵时,所提出的方法可以有效地实现专利实例中主体-行为-客体语义结构的社区网络划分;通过分析社区网络中节点主题的权重确定社区网络主题,提高了主题凝聚的准确性;在海底电缆反应力锥切削技术的专利实例分析中,利用主体-行为-客体语义结构和Louvain算法凝聚了 7个技术主题、9个功效主题,验证了所提出方法的有效性.
Technology-effect Matrices Constructed by Using Subject-Action-Object Semantic Analysis
Aiming at the key problem of accurately defining technology and effect themes,a method of constructing technology-effect matrices based on subject-action-object semantic analysis was proposed by analyzing semantic co-occurrence of technology and effect themes in constructing technology-effect matrices.Formulate search expressions on the basis of target domains,relevant patent data were downloaded from the patent database of China National Intellectual Property Administration,and the relevant patent data were preprocessed to obtain target patent information documents.Subject-action-object semantic structures of patent information documents were extracted by using Python language pro-gramming and Chinese word segmentation toolkit language technology platform.Semantic similarities between theme words were calculated by combining target domain corpus,term frequency-inverse document frequency,and cosine similarity.The clustering algorithm Louvain algorithm was utilized to divide community networks in order to condense the technology and effect themes,and the technology-effect matrices were constructed through co-occurrence relationship of subject-action-object semantic structures.Taking the submarine cable anti-stress cone cutting technology as an example,the effec-tiveness of the proposed method was verified through patent case analysis.The results show that the proposed method can effec-tively divide the subject-action-object semantic structures of patent cases into community networks when a large number of patent cases are analyzed to construct technology-effect matrices.By analyzing weight values of node topics in community networks to determine themes of community networks,accuracy of theme cohesion is improved.In the patent case analysis of submarine cable anti-stress cone cutting technology,7 technology themes and 9 effect themes are condensed by using subject-action-object semantic structures and Louvain algorithm,verifying the effectiveness of the proposed method.

subject-action-objectsemantic analysistechnology-effect matrixpatent textclustering algorithm

张瑞年、高常青、时子皓、刘永旭、杨波

展开 >

济南大学 机械工程学院,山东济南 250022

主体-行为-客体 语义分析 技术功效矩阵 专利文本 聚类算法

山东省自然科学基金项目

ZR2020ME137

2024

济南大学学报(自然科学版)
济南大学

济南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.441
ISSN:1671-3559
年,卷(期):2024.38(5)