首页|基于循环卷积生成对抗网络的风机齿轮箱故障诊断

基于循环卷积生成对抗网络的风机齿轮箱故障诊断

扫码查看
风机齿轮箱是风力涡轮传动系统中的关键部分,其故障发生随机、故障样本数量不足,严重影响故障诊断的准确性.针对此问题,提出一种基于循环卷积生成对抗网络的风机齿轮箱故障诊断方法.首先,构建基于循环卷积生成对抗网络的样本生成模型,利用卷积网络和循环网络作为生成器增强样本间的时间相关性;借助 Wasser-stein距离与梯度惩罚项改进目标函数,并通过博弈对抗机制优化生成器和判别器,提高模型的泛化能力.然后,结合真实样本和生成样本,设计基于堆叠去噪自编码器的故障诊断方法,实现齿轮箱的故障诊断.最后,利用风力涡轮传动系统数据集验证所提出的风机齿轮箱故障诊断方法的性能.结果显示,所提方法能够有效平衡故障样本数据集,进一步提高风机齿轮箱故障诊断的准确率.
Fault diagnosis for wind turbine gearbox based on recurrent convolutional generative adversarial network
Wind turbine gearbox is a key part of the wind turbine transmission system,but its faults are relatively random and the number of fault samples is insufficient,which seriously affect the accuracy of fault diagnosis.To solve this problem,a fault diagnosis method based on recurrent convolutional generative adversarial network was proposed in this paper.First,a sample generation model based on recurrent convolutional generative adversarial network was constructed,in which convolutional networks and recurrent networks were used as generators to enhance the temporal correlation between samples.Wasserstein distance and gradient penalty terms were introduced to improve the objective function and the game confrontation mechanism was used to optimize the generator and discriminator so that the generalization ability of the model could be strengthened.Then a fault diagnosis method based on stacked denoising autoencoder was designed by combining real samples and generated samples to realize the fault diagnosis of gearbox.Finally,the performance of the proposed fault diagnosis method was verified by the data set from the wind turbine transmission system.The results show that the proposed method can effectively balance the fault sample data set,which further improves the fault diagnosis accuracy of the wind turbine gearbox.

fault diagnosiswind turbine gearboxgenerative adversarial networkrecurrent convolutional net-workssample generation

赵承利、张璐、钟麦英

展开 >

山东科技大学 电气与自动化工程学院,山东 青岛 266590

故障诊断 风机齿轮箱 生成对抗网络 循环卷积网络 样本生成

国家自然科学基金国家自然科学基金国家自然科学基金中国博士后科学基金

6223301261873149621032462021M691966

2024

山东科技大学学报(自然科学版)
山东科技大学

山东科技大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.437
ISSN:1672-3767
年,卷(期):2024.43(1)
  • 1
  • 4