首页|基于迁移学习的GOCI超分辨率重建与海洋漂浮藻类探测

基于迁移学习的GOCI超分辨率重建与海洋漂浮藻类探测

扫码查看
遥感技术是进行海洋漂浮藻类目标识别与变化监测的重要手段.GOCI遥感卫星影像具有高时间分辨率、低空间分辨率的特点,其低空间分辨率影响了海洋漂浮藻类遥感探测的效果.本研究通过对具有较高空间分辨率的Sentinel-2遥感卫星影像结构特征的迁移学习,应用ESRGAN超分辨率重建技术,将GOCI影像的空间分辨率提升至125 m;在此基础上,构建了基于超分辨率重建GOCI遥感影像的U-Net深度学习语义分割网络,实现了海洋漂浮藻类的较高精度探测.实验结果表明:超分辨率重建的GOCI影像显著提升了影像的空间细节清晰度,基于此实现的海洋漂浮藻类探测结果取得了较高的精度,其中面积相对误差下降了51.87%,F1 值提高了2.41%.本研究是应用GOCI遥感影像进行海洋漂浮藻类高精度探测的一次成功实践,为实现海洋目标的动态精细化监测提供有益的参考.
GOCI super-resolution reconstruction based on transfer learning and detection of marine floating algae
Remote sensing technology is an important means for detecting and monitoring changes in floating algae in the ocean.GOCI remote sensing satellite images have the characteristics of high-temporal and low-spatial resolution.Its low spatial resolution affects the effect of remote sensing detection of marine floating algae.In this paper,through the transfer learning of the structural characteristics of Sentinel-2 remote sensing satellite images with high-spatial resolution,the spatial resolution of the GOCI images were enhanced to 125 m by using ESRGAN super-resolution reconstruction technology.On this basis,a U-Net deep learning image segmentation network based on super-resolution reconstructed GOCI remote sensing images was constructed.This network was used to achieve higher-precision detection of marine floating algae.The experimental results showed that the super-resolution reconstructed GOCI images significantly improved the spatial detail clarity of images and the detection results of marine floating algae achieved high accuracy,with a reduction of 51.87%in the area relative error and an increase of 2.41%in the F1 value.As a successful practice in enhancing the accuracy of detecting marine floating algae targets using GOCI remote sensing images,this study provides a valuable reference for achieving the dynamic and fine-grained monitoring of marine targets.

GOCI imagedata fusionsuper-resolution reconstructionmarine floating algae detectiondeep learning

朱红春、朱国灿、李金宇、张怡宁、芦智伟、杨延瑞、刘海英

展开 >

山东科技大学 测绘与空间信息学院,山东 青岛 266590

山东省海洋工程咨询协会,山东 济南 250013

山东科技大学 计算机科学与工程学院,山东 青岛 266590

GOCI影像 数据融合 超分辨率重建 海洋漂浮藻探测 深度学习

国家自然科学基金山东科技大学科研创新团队支持计划

419713392019TDJH103

2024

山东科技大学学报(自然科学版)
山东科技大学

山东科技大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.437
ISSN:1672-3767
年,卷(期):2024.43(2)
  • 15