首页|基于迁移学习的GOCI超分辨率重建与海洋漂浮藻类探测

基于迁移学习的GOCI超分辨率重建与海洋漂浮藻类探测

GOCI super-resolution reconstruction based on transfer learning and detection of marine floating algae

扫码查看
遥感技术是进行海洋漂浮藻类目标识别与变化监测的重要手段.GOCI遥感卫星影像具有高时间分辨率、低空间分辨率的特点,其低空间分辨率影响了海洋漂浮藻类遥感探测的效果.本研究通过对具有较高空间分辨率的Sentinel-2遥感卫星影像结构特征的迁移学习,应用ESRGAN超分辨率重建技术,将GOCI影像的空间分辨率提升至125 m;在此基础上,构建了基于超分辨率重建GOCI遥感影像的U-Net深度学习语义分割网络,实现了海洋漂浮藻类的较高精度探测.实验结果表明:超分辨率重建的GOCI影像显著提升了影像的空间细节清晰度,基于此实现的海洋漂浮藻类探测结果取得了较高的精度,其中面积相对误差下降了51.87%,F1 值提高了2.41%.本研究是应用GOCI遥感影像进行海洋漂浮藻类高精度探测的一次成功实践,为实现海洋目标的动态精细化监测提供有益的参考.
Remote sensing technology is an important means for detecting and monitoring changes in floating algae in the ocean.GOCI remote sensing satellite images have the characteristics of high-temporal and low-spatial resolution.Its low spatial resolution affects the effect of remote sensing detection of marine floating algae.In this paper,through the transfer learning of the structural characteristics of Sentinel-2 remote sensing satellite images with high-spatial resolution,the spatial resolution of the GOCI images were enhanced to 125 m by using ESRGAN super-resolution reconstruction technology.On this basis,a U-Net deep learning image segmentation network based on super-resolution reconstructed GOCI remote sensing images was constructed.This network was used to achieve higher-precision detection of marine floating algae.The experimental results showed that the super-resolution reconstructed GOCI images significantly improved the spatial detail clarity of images and the detection results of marine floating algae achieved high accuracy,with a reduction of 51.87%in the area relative error and an increase of 2.41%in the F1 value.As a successful practice in enhancing the accuracy of detecting marine floating algae targets using GOCI remote sensing images,this study provides a valuable reference for achieving the dynamic and fine-grained monitoring of marine targets.

GOCI imagedata fusionsuper-resolution reconstructionmarine floating algae detectiondeep learning

朱红春、朱国灿、李金宇、张怡宁、芦智伟、杨延瑞、刘海英

展开 >

山东科技大学 测绘与空间信息学院,山东 青岛 266590

山东省海洋工程咨询协会,山东 济南 250013

山东科技大学 计算机科学与工程学院,山东 青岛 266590

GOCI影像 数据融合 超分辨率重建 海洋漂浮藻探测 深度学习

国家自然科学基金山东科技大学科研创新团队支持计划

419713392019TDJH103

2024

山东科技大学学报(自然科学版)
山东科技大学

山东科技大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.437
ISSN:1672-3767
年,卷(期):2024.43(2)
  • 15