首页|基于相位恢复的SBAS-InSAR技术与光学影像结合的攀枝花地区滑坡早期识别

基于相位恢复的SBAS-InSAR技术与光学影像结合的攀枝花地区滑坡早期识别

扫码查看
为克服传统SBAS-InSAR技术存在的相干性高估以及高相干点密度、质量低的问题,将相位恢复引入SBAS-InSAR中,采用改进的高相干点选取方法提高形变速率反演精度;同时利用GF-1号高分辨率光学影像辅助InSAR形变监测结果,以提高研究区滑坡体早期识别准确性及全面性.研究发现,经过相位恢复后,选取的高相干点密度及质量明显提高;共识别出隐患点28处,其中11处与已知隐患点完全匹配,新识别出17个滑坡隐患点,在随机选取的隐患点现场调查验证时均存在地表裂缝等滑坡隐患特征.因此,将相位恢复的思想引入SBAS-InSAR中,可以有效提高高相干点选取的密度和质量,使得相干性得到有效校正,从而提高形变监测的精度;此外,光学影像辅助获取形变信息,是对InSAR滑坡隐患点识别结果精度及可解释性的有效补充.
Early identification of landslides in Panzhihua area using SBAS-InSAR technique and optical images based on phase recovery
To overcome the problems of the overestimation of coherence and the low density and quality of high coherence points existing in the traditional SBAS-InSAR technique,this paper introduced phase recovery into SBAS-InSAR and used the method of selecting high-coherence points to enhance the accuracy of deformation rate inversion.It also utilized the high-resolution optical image of GF1 to identify the deformation monitoring results of InSAR and then to improve the accuracy and comprehensiveness of the early identification of landslides in the study area.The results showed that the density and quality of the selected high-coherence points were significantly improved after the use of phase recovery method.A total of 28 hazardous points were identified in the study area,among which 11 pints were completely matched with the known hazardous points and 17 pints were newly identified landslide hazardous points,which were confirmed by the randomly-selected on-site investigations.Therefore,introducing phase recovery into SBAS-InSAR can effectively improve the density and quality of high coherence point selection,through which the coherence can be effectively corrected,thus improving the accuracy of deformation monitoring.In addition adding the deformation information obtained by the optical image is an effective supplement for the early identification and interpretability of the landslide hazard points.

SBAS-InSARphase recoveryoptical remote sensingearly landslide identification

仲鹏宇、张王菲、戴可人、郭世鹏、许政勇

展开 >

西南林业大学 地理与生态旅游学院,云南 昆明 650224

成都理工大学 地球科学学院,四川 成都 610000

昆明理工大学 国土资源工程学院,云南 昆明 650224

SBAS-InSAR 相位恢复 光学遥感 早期滑坡识别

国家自然科学基金

42161059

2024

山东科技大学学报(自然科学版)
山东科技大学

山东科技大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.437
ISSN:1672-3767
年,卷(期):2024.43(2)
  • 16