首页|基于异质信息对齐和重排序的跨模态行人重识别方法

基于异质信息对齐和重排序的跨模态行人重识别方法

扫码查看
可见光图像和红外图像成像原理不同,面向可见光和红外光的跨模态行人重识别面临较大的跨模态差异,行人异质信息对齐和挖掘异常困难.为此,提出基于异质信息对齐和重排序的跨模态行人重识别方法.在异质信息对齐方面,提出一种新的异质局部信息对齐算法,通过求取行人异质局部信息距离矩阵的最短路径,实现同一行人异质局部信息的动态匹配,解决行人异质信息对齐问题;在重排序方面,提出拓展k近邻重排序算法,通过动态地拓展查询图像k近邻异质信息,实现同一行人异质信息的融合,解决行人异质信息挖掘困难问题.实验结果表明,在SYSU数据集全场景查询模式上,所提方法与AGW模型结合k近邻重排序算法相比,在评价指标mAP和Rank-1上分别提升了10.12%和8.6%.
Cross-modal person re-identification method based on heterogeneous information alignment and reranking
Cross-modal person re-identification between visible and infrared light images is a challenge due to the differences in imaging principles.The alignment and mining of heterogeneous pedestrian information become difficult.To address this,we proposed a cross-modal person re-identification method based on heterogeneous information alignment and reranking.The proposed method includes a new algorithm for heterogeneous local information alignment,which dynamically matches the same pedestrian heterogeneous local information by obtaining the shortest path of the distance matrix.We also proposed an extended k-nearest neighbor reranking algorithm,which realizes the same pedestrian heterogeneous information fusion and reduces the difficulty of information mining by dynamically expanding the heterogeneous information of the query image's k mutual nearest neighbors.The experimental results show that our method improves mAP and Rank-1 evaluation indexes by 10.12%and 8.6%respectively on the SYSU dataset compared to the AGW model combined with k mutual nearest neighbor reranking algorithm.

cross-modalperson re-identificationheterogeneous information alignmentrerankingdeep learning

赵铁柱、梁校伦、杨秋鸿、张国斌、龚莨皓

展开 >

东莞理工学院 计算机科学与技术学院,广东 东莞 523808

东莞城市学院 人工智能学院,广东 东莞 523419

东莞理工学院 电子工程与智能化学院,广东 东莞 523808

跨模态 行人重识别 异质信息对齐 重排序 深度学习

国家自然科学基金广东省普通高等学校重点领域专项东莞城市学院青年教师发展基金

619011152021ZDZX30072022QJY005Z

2024

山东科技大学学报(自然科学版)
山东科技大学

山东科技大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.437
ISSN:1672-3767
年,卷(期):2024.43(2)
  • 22